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THE BEHAVIOURSAND PROPERTIES OF
M ICROSCOPIC PARTICLESIN NONLINEAR SYSTEMS

Pang Xiao-feng*
Institute of Life Science and Technology, University of Electronic Science and
Technology of China, Chengdu 610054, Chinaand International Centre for Materials
Physics, Chinese Academy of Science, Shenyang 110015, China

ABSTRACT

We here propose the elementary principles of nonlinear quantum mechanics (NLQM),
which is based on some problems in quantum mechanics. The motion laws and some
main properties of microscopic particles in nonlinear quantum systems are studied in
detail using these elementary principles. Concretely speaking, we investigate in this paper
the wave-particle duality of the solution of the nonlinear Schrodinger eguation, the
stability of microscopic particles described by NLQM, invariances and conservation laws
of motion of particles, the Hamiltonian principle of particle motion and corresponding
Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, the
mechanism and rules of particle collision, the features of reflection and the transmission
of particles at interfaces, and the uncertainty relation of particle’s momentum and
position as well as the eigenvalue of particles and its properties, and so on. We obtained
the invariance and conservation laws of mass, energy and momentum and angular
momentum for the microscopic particles, which are also some elementary and universal
laws of matter in the NLQM and give the methods and ways of solving the eigenvules.
We also find that the laws of motion of microscopic particles are completely different
from that in the linear quantum mechanics (LQM). They have alot of new properties; for
example, the particles possess the real wave-corpuscle duality, obey the classica rule of
motion and conservation laws of energy, momentum and mass, satisfy minimum
uncertainty relation, can be localized due to the nonlinear interaction, and its position and
momentum can aso be determined, etc. From these studies, we see clearly that rules and
features of microscopic particle motion in NLQM is different from that in LQM, the
latter is a especial case of the former at the nonlinear interaction to equal to zero.The
NLQM is a new physical theory, and a necessary result of the development of quantum
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mechanics and has a correct representation of describing microscopic particles in
nonlinear systems, which can solve problems disputed for about a century by scientistsin
the LQM fidld. Hence, the NLQM built is very necessary and correct, can promote the
development of physics and can enhance and raise the knowledge and recognition levels
to the essences of microscopic matter. We can predict that nonlinear quantum mechanics
has extensive gpplications in physics, chemistry, biology and polymers, etc

Keywords quantum mechanics, microscopic particle, nonlinear systems, nonlinear
Schrodinger equation, basic principle, nonlinear theory, wave-particle duality, motion rule

1. INTRODUCTION, PHY SICAL BACKGROUND

Asis known, the quantum mechanics established by several great scientists such as Bohr,
Born, Schrodinger and Heisenberg, etc., in the early 1900s ¥ is the science describing the
properties and rules of motion of microscopic particles (MIP). It is a foundation of modern
science, in which the state of microscopic particlesis described by the Schrodinger equation:

i ﬂi:_ _2~ s
ih e 2mNPy +V(r,t)y 1)

~ ®
whereh?N? / 2m is the kinetic energy operator, V(T t) is the externally applied potential
operator, m is the mass of particles, y (} ,t) is a wave function describing the states of

®
partides, r is the coordinate or position of the partide and t is the time This description
indicates that MIPs have the wave-particle duality because it is both a wave and has a
determinant mass. However, eguation (1) is a wave equation, and if only the externaly
applied potential is known, we can find the solutions of the eguation. But, for all externally
applied potentials, the solutions of the equation are aways a linear or dispersive wave, for

[ . .
example at V (r,t) =0, its solution is a plane wave as follows:

y (F.t)= Aexpli (ko - wt)] @

where k is the wavevector of the wave, w is its frequency, and A’ is its amplitude
I . . . .
WhenV (r ,t) 1 0, its solutions are a de Broglie wave or a Bloch wave, and so on. This

means that y (} ,t) denotes only a wave Therefore, the MIP is represented by a wave in

guantum mechanics. It always disperses in total space and cannot be localized. In other words,
the solutions of Eq. (1) in the case of any potential possessing only a wave feature and not a
particulate nature or corpusclewave duality, thus the MIPs is unstable and have not a
determinant position in the space at any time This is not consisent with the above
description of MIP. Thus we have to introduce Born’s hypothesis and can to use the
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u 2 ®
Iy (r,t)| representing the probability occurred particle at positionr . Thus we refer ever to

y (} ,t) as a probability wave. As is known, the wave feature and probability concept of MIP

isincompatible with the traditional concept of stability and the determinant size of particles "
% The above properties of MIPs result in the occurrence of the probability concept,
uncertainty relation, and statistical average values of mechanical quantities in quantum
mechanics, which were thought to be an dementary concepts and principle of quantum
mechanics and the intrinsi ¢ features of MIP, but are all contradictory with regard to particles.
Thus, we have reasons to improve and develop quantum mechanics [,

However, why does quantum mechanics have these questions? This is worth studying
deeply and in detail. As is known, eguation (1) describes the motion of a partide the
corresponding Hamiltonian operator of the system is

HA(t) = h®°N?/2m+ V((? 9 ®3)

Obvioudly, it consists only of kinetic and potential operator of partides; the potential is
only determined by an externally applied fidd, and not related to the state or wavefunction of
the particle, thusthe potential can only change the states of MIP, and cannot change its nature
and essence. Therefore, the natures and features of MIP are only determined by the kinetic
term. Thus thereis no force or energy to obstruct and suppress the dispersing effect of kinetic
energy in the system, then the MIP disperses and propagates in total space, and cannot be
localized at al. This is the main reason why MIP has only wave feature in quantum
mechanics. Meanwhile, the Hamiltonian in Eq.(3) does not represent practical essences and
features of MIP. In real physics, the energy operator of the systems and number operator of
partides are always associated with the states of particles, i.e, they are related to the
wavefunction of MIP. On the other hand, Eq.(2) or (3) can describe only the states and feature
of a single particle, and cannot describe the states of many particles. However, a system
composed of one partide does not exist in nature The simplest system in nature is the
hydrogen atom, but it consists of two particles. In such a case, when we study the states of
partides in redlistic systems composed of many particles and many bodies using quantum
mechanics, we have to use a simplified and uniform average-potential unassociated with the
states of partides to replace the complicated and nonlinear interaction among these partides
(1011 This means that the motions of the particles or background field are completely freezed
in such a case. Thus, these complicated effects and nonlinear interactions determining
essences and natures of particles are ignored completely. Therefore, the state and properties
of particles determined by the simplified or average potential is not real and correct.
Obvioudy,this is not reasonable Then we can only say that quantum mechanics is an
approximate and linear theory and cannot represent completely the properties of motion of
MIPsWe here refer to it as linear quantum mechanics (LQM). Meanwhile, a lot of
hypotheses or theorems of particles in quantum mechanics also do not agree with
conventional understanding, and have excited a long-time debate between scientists. Up to
now, there is no unified condusion. Therefore, it is necessary to improve and develop LQM.
However, what is its direction of development? From the above studies we know that a key
shortcoming or defect of LOQM is its ignoring of dynamic states of other particles or
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background fied, and the dependence of the Hamiltonian or energy operator of the systems
on the states of particles and nonlinear interactions among these particles. As a matter of fact,
the nonlinear interactions always exist in any realistic physics systems induding the hydrogen
atom, if only the real motions of the particles and background as well as their interactions are
completely considered®™. At the same time, it is also a reasonable assumption that the
Hamiltonian or energy operator of the systems depend on the states of particles™®?. Hence,
to establish a correct new quantum theory, we must break through the d ementary hypotheses
of LQM, and use the above reasonable assumptions to include the nonlinear interactions
among the particles or between the particles and background field as well as the dependences
of the Hamiltonian of the systems on the state of particles. Thus, we must establish nonlinear
guantum mechanism (NLQM) to study the rules of motion of MIPs in realistic systems with
nonlinear interactions by using the above new idea and method™??.

Pang worked out the NLQM describing the properties of motion of MIPs in nonlinear
systems 2?1, The dementary principles, theory, calculated rules and applications of NLQM
were described in Pang et al.”s books % %1, For the devel opment of quantum mechanics from
linear range to nonlinear domain in the basis of origina guantum mechanics, Pang worked at
and investigated this problem for about 20 years ">%"). In this investigation, Pang first sought
the roots of these problems existing in the LQM. Subsequently, Pang **” broke through the
restrictions of the dementary hypotheses for the independence of the Hamiltonian of the
systems on the states of the particles and the linearity of the theory in the LQM, and proposed
and established the dementary principles and theory of the NLQM, based on the relations
among the nonlinear interaction and soliton motions and macroscopic quantum effect, and
incorporating modern theories of superconductors, superfluids and solitons, according to the
features of macroscopic quantum effects and soliton theory. A lot of practices and
experiences demonstrate that the NLQM is successful®®?. This paper is essentialy
composed of four parts. The first presents the fundamental principles of NLQM. The
descriptions of essential features of microscopic partides, induding the wave-partide duality
of the solution of the nonlinear Schrodinger equation, the stability of microscopic partides
described by NLQM, the invariances and conservation laws of motion of particles, the
Hamiltonian principle of partide motion and corresponding Lagrangian and Hamilton
equations, the dassical rule of microscopic partide motion, the mechanism and rules of
partide collision, the features of reflection and the transmission of particles at interfaces, and
the uncertainty relation of particle’s momentum and position, are covered in the second part.
The eigenvules and eigenequation of the Hamiltonian operator of the systems and nonlinear
Schrodinger equations as wdl as their properties are presented in the thirdpart, A conclusion
of the investigation is finally given. These invegtigations are helpful for understanding the
properties of MIPs in nonlinear systems and the essences of NLQM.

2. FUNDAMENTAL PRINCIPLES OF NONLINEAR QUANTUM MECHANICS

Based on the earlier discussion on linear quantum mechanics, the fundamental principles
of nonlinear quantum mechanics (NLQM) may be summarized as fol lows *#3%.

(1) Microscopic particles in a nonlinear quantum system are described by the following
wave function,
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f(r.t)=j (r )t (4)

where both the amplitude | (} ,t) and phase q(} ,t)of the wave function are functions of
space and time, and satisfy different equation of motion.

(2)In the nonrdativistic case, the wave function f (} ,t) satisfies the generalized nonlinear
Schrodinger equation (NLSE), i.e,

L ([ | S [

'hﬁ_'%m £h[f [ +V (r,t)f +A(f), 5)
or
M _ h® . 2 r

Mr =" %sz £bf 't +V(r,tf +Af) ©6)

where p is a complex number, V isan external potential field, A isa function of f (} ,t), and
b isa coefficient indicating the strength of nonlinear interaction.
In the rdativistic case, the wave function f (} ,t)&atisfies the nonlinear Klein-Gordon

equation (NLKGE), including the generalized Sine-Gordon equation (SGE) and the f *-field

equation, i.e,
RERi . i .
~ -~ _=psinf +g—+ Alf ) (=1,2,3 7
TEE 9qp " AF) =129 v
7 g 2 .

- maf £blf| 2f = AF) (=123 8
e ﬂx.2ma+|| (f) (=123 (8)

J

where vy represents a dissipative or frictional effects, a is a congtant, B is a coefficient
indicating the strength of nonlinear interaction and A isafunction of f (} ,t) :

From the above fundamental principles, we see clearly that the NLQM breaks through the
fundamental hypotheses of the LQM in two aspects, namely the linearity of dynamic
equations and independence of the Hamiltonian operator with the wave function of the
partides. In the NLQM, the dynamic equations are all some nonlinear partial differential

2
equations, in which nonlinear interactions, b|f| f |, rdated to state wave functionf are

involved. Thus we can expect that the Hamiltonian or Lagrangian operators corresponding to
these equations also are all rdated to the state wave function f , which can seein Egs. (16)-

(17). Hence, o far as this point is concerned, the NLQM s really a break-through or a new
development in quantum mechanics.
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3 THE FEATURES OF MICROSCOPIC PARTICLESIN NONLINEAR
QUANTUM MECHANICS

3.1. The Solutions Of Nonlinear Schrodinger Equation And Its Wave-
Particle Features

In the one-dimensional case, the solution of Eq.(5) at V(x,t)= A(f )=0 can be found by
using some methods, for example, the inverse scattering method, which is of the form!?%2"3!;

X, t sech.pb\/_e\/ X - A e glami ) vl an 9)
tv2h € o
V- 2v.V
where A, = 62—b°e . This solution is completdy different from Eq.(2). In fact, it is a

bdI-type non-topological soliton as shown in Figurel. Therefore, the microscopic partide in

NLQM is a soliton. Here, | (X,t) = Absech{Ab[\/Eb(x- X,) - Vet]/\/Eh} is

the envdop of the solution, and eXp{iVelV 2m(x- Xo)' VetJ/ Zh} isits carrier wave. The
form of soliton of MIP is shown in Figurel. The envelop o(x,t) isaslow varying function and
the mass center of the particle, the position of the mass center is just at Xo, Ag iSitsamplitude,

and its width is given by W =2ph/(~mbA, . Thus, the size of the soliton is

AW =2ph/~/mb, and a constant. This shows that the partid e has determinant form and

size and islocalized, veis the group vdodity of the particle (soliton), v.is the phase speed of
the carrier wave. For a certain system, v. and v. and the size of the particle are determinant
and do not change with time. According to the soliton theory **%¥ the bell-type soliton in Eq.
(9) can move freely over macroscopic distances in a uniform vdocity ve in space-time
retaining its form, energy, momentum and other quasi-particle properties. In this condition, its
mass, momentum and energy are some constants, and can be represented by 2527

¥

N, =0, f |2dx'=2ﬁpb
i, [ F - £ Jax=2v2Ay, = N,v, = cont

E

C‘igf -—|f Y= E, +;Mw|ve (10)
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where X'= x/+/h?/2m, t'=t/h,and M, = N, = 2,/2A, iseffective mass of MIP,
which is a constant. The energy, mass and momentum of the particle are invariant and cannot

®
be dispersed in its motion. Just so, the position vector r and position x (or x,y,2) has
definitively physical significance, and denotes exactly the positions of MIPs at time t. Thus,

®
the wavefunction f (} ,t)or o(x,t) can represent exactly the states of MIP at the position r or

x and timet. Thisis consistent with the concept of particles or corpusdes. In such a case the
effective potential with two minimum possessed by the partide is shown in Fig.1c. At the
same time, in Figure 1(d), we show the collision property of two soliton solutions of Eg. (9)
by numerical simulation technique. From this figure, we see clearly that the two partides can
go through each other while retaining their form after the collision, which is the same with
that of the dassical particles. Therefore, the microscopic particle in NLQM has an obvious
parti culate feature. However, the enveope of the solution in Eq. (9) isa solitary wave. It has a
certain wavevector and frequency as shown in Figure 1(b), and can propagate in space
accompanying the carrier wave, i.e, the carrier wave carries the envelope to propagate in
space-time; the feature of propagation depends only on the concrete nature of MIPs. Figure
1(b) shows the width of the frequency spectrum of the envelope ¢(xt), the frequency
spectrum has a localized structure around the carrier frequency wo. If V(x,t)1 0, we can find
also out similar soliton solutions with Eq.(9), where the differences are only the amplitudes
and velodities. So, the microscopic particlein NLQM has exactly wave-particulate duaity
2 This consists of Davisson and Germer’s experimental result of eectron diffraction on
double seam in 1927.

(©)

Figurel. Thesolution in Eq. (9) a V=A=0 in Eq. (5) and itsfeatures.
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However, we must remember that the solution of dynamic equations (5)-(8) in nonlinear
guantum mechanics in the limits of weak nonlinear interaction also are not exactly the
solutions of the dynamic equations in linear quantum mechanics. To see this clearly, we first
examinethe velocity of the skirt of the soliton givenin Eq. (9), which is now rewritten as

f (x6t9 = 22k sech €2k (x6- X, - u et 9" a

forb=1V (},tﬂ) = A(f ) =0 inEq. (5). Asis known, the nonlinear term in Eq. (5) sharpens
the peak, while its dispersion term has the tendency to leave it off. Then, for weak nonlinear
interaction and small skirtf (x¢t®, it may be approximated by (for X >u,t)

f = 4\/§ke-2k(x¢uetﬂ)eiue(x¢—uctq)/2 W
and the small term [f |*f in Eq. (5) in such a case can be approximated by

if g +f e >0 (13)
Substituting Eq. (12) into Eq. (13), we get U, » 4K, which is the group speed of the

partide. (Near the top of the peak, we must take both the nonlinear and dispersion terms into
account because their contributions are of the same order. The result is the group speed.).

Here, we have only checked the formula for the region where f (X,t) is small; that is, when
a partide is approximated by Eq.(12), it satisfies the approximate wave equation (13) with
u, »4k.

However, if Eq.(13) is treated as a linear Schrodinger equation, its solution is a plane
wave as follows:

f¢x,t)=Agl" (14)
We now have w =K?, which gives the phase velodity w/K as u, =k and the group

speed Tw/ Tk =u, =2K. Apparently, this is different from u, =4k This is because the

solution Eq. (12) is essentidly from Eq. (14). This shows clearly that the solution Eq. (14) of
linear Schrodinger equation also is not the solution of nonlinear Schrodinger equation (5)
with V(x,t)= A(f )=0 in the case of weak nonlinear interactions. Hence, nonlinear quantum
mechanics differs in essence from linear quantum mechanics. Solution Eg. (12) is a
“divergent solution” (i.e,f (X,t)® ¥ at x® -¥ ), whichis not an “ordinary plane wave”.

The concept of group speed does not apply to a divergent wave Thus, we can say that the
soliton is made from a divergent solution, which is abandoned in the linear waves. The
divergence devdops by the nonlinear term to yield solitary waves of finite amplitude. When
the nonlinear term is very wesk, the soliton will diverge but cannot absolutdy become a
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plane wave; and if we suppress divergence no soliton will result. These circumstances are
clearly seen from the following soliton in the case of nonlinear coefficient b1 1

f(xt)= Z\Eksech 2k (x¢- u tgete (15)

If the nonlinear term approaches zero ( b® 0 ), the solitary wave diverges
(f (xt)® ¥ ) If we want to suppress the divergence, then we haveto set K =0. In such a

case, we get Eq. (14) from Eq. (15). Thisillustrates that the nonlinear Schr&&linger equation
or nonlinear quantum mechanics can reduce to the linear Schré@&linger equation or linear

guantum mechanicsif and only if the nonlinear interaction and the group speed of the particle
are zero. Therefore, we can condude that the particles (solitons) of nonlinear guantum
mechanical equations in the weak nonlinear interaction limit is not the same as that in linear
guantum mechanics. If the nonlinear interaction is zero, the nonlinear quantum mechanics
reduce to the linear quantum mechanics. However, rea physical systems or materials are
made up of a great number of MIPs, and nonlinear interactions always and widdy exist in the
systems, even though in the systems of two bodies, such as hydrogen atom. The nonlinear
interactions arise from interactions among the MIPs or between the M IPs and the background
fieds. The nonlinear quantum mechanics should be the correct and more appropriate theory
for real systems. It should be used often and extensivey, even in weak nonlinear interaction
cases. The linear quantum mechanics, on the other hand, is an approximation to the more
general nonlinear quantum theory and can be used to study motions of MIPs in systems in
which there exists only very weak and negligible nonlinear interactions 257,

3.2. DEMONSTRATION OF STABILITY OF MICROSCOPIC PARTICLE

Asis known, in classical physics the macroscopic partides are certainly stable. Stability
is an dementary feature of a particle However, is the microscopic particle (M1P) described
by NLQM or the solution of nonlinear Schrodinger equation (NLSE) in Eq. (5), for instance,
Eq.(9), stable? This is also a basic problem in NLQM, and need to be proved further. In the
absence of an externally applied fidd, the stability of the MIPs in NLQM can be
demonstrated by means of the initial and structural stabilities. However, how are MIP's
behaviors exposed in an externally applied fidd? If the motion of all the MIPs is located in a
finite range where the potential is lowest, we can say that the MIPs are stable according to the
minimum theorem of energy. As a matter of fact, when there are a lot of particles in the
system, the interactions with one another among the particles are very complicated; it is very
difficult to define the behavior of each oneindividually. Therefore, we cannot adopt again the
strategies of initial stability and collision to study their stability. Instead, we take advantage of
the following consideration: when a mechanica system is in a state of minimal energy we
may say that it is stable, and to change this state, external energy must be supplied. Pang used
thisminimal energy consideration to demonstrate the stability of the M1Ps as follows.
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Let f (x,t) represent the field of the particle; meanwhile, we assume that it possess
derivatives of all orders, and al integrations for it be convergent and finite. The Lagrange
density function corresponding to the NL SE Eq.(5) at A(f ) = Oisgiven asfollows:

L=t 117)- o (NERE)- v ()1 °f it 't ) (16)

The momentum density of this field is defined as P= aL/ f . Thus, the Hamiltonian
density of thefidd is as follows

H= ﬂ(f N f - fﬂf*) ] :h_z(Nf >4§|f*)+v(x)ff*- b/2(ff*)2 (17)
2V ' m

From EQs.(16)-(17), we see dearly that the Lagrangian and Hamiltonian operators of the
systems corresponding to Eq. (5) are all rdated to the state wave function of particles and
involve all nonlinear interactional energy, b/2 (f f *)* related to the states of MIP. Thisisin
essence different from Eq. (3) in LOM. Then the natures and features of MIP are
simultaneously determined by the kingic and nonlinear interaction terms in nonlinear
guantum mechanics. Just so, thereis a force or energy to obstruct and suppress the dispersing
effect of kinetic energy in the system, thus the MIP cannot disperse and propagate in total
space, and is localized all the time. This is just the essential reason that the MIP has a
particulate nature or corpusde-wave duality as mentioned above in Section 3.2 in nonlinear
guantum mechanics. Therefore, we can say that the above fundamental principles of the
NLQM in Egs.(4)-(8) breaks through the fundamental hypothesis for the independence of
Hamiltonian operator with the wave function of the partides in the LQM. This is a new
development.

In the general case thetotal energy of the partidesis a function of t¢ and is represented

by

N8I by
E(tﬂ)—_g)éﬂxi 2|ff

However, in this case, b and V(x() are not functions of t¢, where x'= x/~v/h?/2m,
t'=t/h. So, thetotal energy of the systems is a conservative quantity, i.e., E(t():E:const.,
as shown in Eq.(10). We can demonstrate that when X(® ¥ , the solutions of Eq.(5) at
Alf )=0and f (x¢t() should tend to zero rapidly!®?7, i e,

SV (df

,U
(ax¢ (18)

. . If
Limf (x¢td=Lim— =0
[x¢® ¥ ( ¢ q) IXe¥ x¢
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Then

¥
d “f dx¢= const. or afunction of t¢
-¥

The position of mass centre of the particles f can be represented as

(x = x¢=x, = c‘if “f dx@/ c‘if “f dx¢. Thus, the velodity of mass centre of the particles

can be denoted by
fi ¢
] *—— dx¢
_dixt_ajg o O g o
= =2 v ™
T dity § rfoxep T *foxe

¥
However, for different solutions of the same NLSE (5), ¢ f dx4, (x4 and dx¢/dit¢ can
-¥
have different values. Therefore, it is unreasonable to compare the energy between a definite
solution and other solutions. We should compare the energy of one particular solution to that
of another solution. The comparison is only meaningful for many MIP systems that have the
¥
same values of ¢§ fdx¢=k., (x4 =u and d < x¢>/dt¢=&at the same time t§. Based
-¥
on these, we can determine the stability of the soliton solutions of Eq. (5), for example, Eq.
(9). Thus, we assume that the different solutions of the NLSE (5) at Aff )=0 satisfy the

following boundary conditions at definitetime t§:

dfdx¢—k (x4, =ults), dfj” = &(t) 20)
! te te-tg

Now we assume the solution of NL SE (5) at A(f ):0 to be of the form:

f(x¢t)=j (x¢tdelstsd (21)

Substituting Eq.(21) into Eq.(18), we obtain the energy formula:

_ \%U 0 +i »adlq 02 .4 2@
— = - b *+VIx (ex¢ 22
%ﬂx% : gﬂx% ) (9 ] (22)
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Eq. (20) becomes

¥ ¥ ﬂ
. ¢ e 29 Z&dm
0 o=k, H——=ufY —H———= #itg) (23)
¥ y Zdx¢ y 2dx¢

9 9

Finding the extreme value of the functional Eq. (22) under the boundary conditions Eq.
(23) by means of the Lagrange uncertain factor method, we obtain the following Euler

equations:
. IV(xd+C(tg)c, (tglxe- utg) +u
0 o010 sgfh 00 B (2‘”
T (C.bele ol b
., 00 %, N .
1o T2qd qet M =0 )

where the Lagrange factors C, , C, and C, are al functions of t( . Now,

1€, 1) = - 2 ultg)

If2 6&99

we can get from Eq.(25)

Integration of the above equation yields

j? ——g(t() rﬂ—qJ = q(tzé)+M (26)
L&( 33) fix g ) 2

ﬂ¢2

whereg(to) isan integral constant. Thus,
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ar519= o+ Ao @
Here, M(to) isalso an integral constant. Again, let

C.19)= 2 g o)

Substituting Eqs.(26)-(28) into Eq.(24), we obtain

1 _ly(gs B9 6 t‘&t& LW zt)

ﬂ(Xq)z %V(Q ('[83) '[3]3 4 t%‘ (29)
Letting

c,(t9)= 2100E). EUE) y1 (g)+ e )

where b Cis an undetermined constant, which is a function of t(-independent, and assuming

= xC- u(ts), then
i _1
ﬂ()(@2 qz2

is only a function of Z. To make the right-hand side of Eq.(30) be also a function of Z,
the coeffidents of j , j° and 1/j ® must also be functions of Z , thus,
g(t§) = g, = const,and

vV (x0)+ @xu M () “240 -V, (z)

Then, Eq.(29) becomes

_={[xe utg]+od - b 1 I @)

Since \7(2) = \70[x¢- u(tgi)] =0 inthe present case. Hence, Eq.(31) becomes
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ﬂzj =b _ b 3 gz(tg)
w0 T T

Therefore, | is the solution of Eq.(32) for the parameters b ( =constant and

(32)

g(ts)=constant. For sufficiently large |Z| we may assume that |j | £ b /|Z|"" , where D is
asmall constant. However, in Eq.(32) we can only retain the solution | (Z) corresponding to
g(t§)=0 to ensurethat Lim, . d?% /dzZ? =0, thus, Eq. (32) becomes

T —bg -1 33

1(x9*

As a matter of fact, if g/qt(=&2, and considering Eqs.(30)-(31) we can verify that
the solution in Eq.(9) can satisfy Eq.(33). In such a case, it is not difficult to show that the
energy corresponding to the solution Eq.(9) of Eqg.(23) has a minimal value under the
boundary conditions of Eq.(23)?%2”. Thus, we can conclude that the soliton solution of NLSE
(5), or theMIPin NLQM is stablein such a case

3.3. THE CONSERVATION LAWSOF M ASS, ENERGY AND M OMENTUM
OF PARTICLES

It is known from classical physics that the invariance and conservation laws of mass,
energy and momentum and angular momentum are some e ementary and universal laws of
matter induding classical particles in nature We demonstrate here also that the microscopic
partides described by the nonlinear Schrodinger equation in nonlinear quantum mechanics
also have such properties. They satisfy the conventional conservation laws of mass,
momentum and energy. This shows that the microscopic particles in the nonlinear quantum
mechanics also have a corpuscle feature. Therefore, the proposed nonlinear quantum
mechanical theory reflects the common rules of motions of matter in nature To solve this

problem, we first should give ®? the Lagrangian L= & d X, where L is denoted by Eq. (16)

and Hamiltonian H= 6 H dx, where H is Eq.(17), for the systems corresponding to Eq. (5),
respectivdy. Thus, the number density, the number current, the densities of momentum and
energy for the particle can be defined by

r =lf B, p=-ih(f, - ff))
(34)

2

J =ih(f *fx-ff;),T :—|fx|2 -9|1‘1‘*|2 V(X |f P
2m 2

T
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_q

wheref = ﬂlf (x,t),f, _tf (X,t) . From Eq. (5) and its conjugate equation as well
X

as Egs.(16)- (17) and (34) we can obtain

\ SR N
ﬂm 11(1[2( q)+(blff F-2VIfF-(" ﬂxcf +f ﬂx(l)]’
1r T9F g 17, . 9f ﬂf
ﬁ_ﬁﬁ_ﬂ_m[ P (ﬂx¢ﬂxcf ﬂx¢ﬂxcf) V( e )] (35)

here X'= x/+/h?/2m, t'=t/h .Thus, we get the following forms for the integral of motion

ﬂ ﬂ 1 ¢
1 p__ 0E_ T gaxe=o0, 36
e ﬂt¢d O grer = qra0PHe= 0 4e= e & (36)

These formulae represent just the conservation of mass, momentum and energy in such a
case. This shows that the mass, momentum and energy of the particles (solitons) in the
nonlinear quantum mechanical systems till obey general rules of conservation of matter in
physics. In the case of V(x,t)=constant, we can find out easily the values of mass, momentum
and energy of the particles of Eq.(5) ***" , as are shown in Eq.(10).

3.4. Thelnvariance and General Conservation Lawsof Particles Described
by Nonlinear Schrodinger Equation

We have learned from Egs.(31) — (34) that some conservation laws for microscopic
particdes described by the nonlinear Schré&linger equation (5) in nonlinear quantum

mechanics are always rdated to the invariance of the action relative to several groups of
transformations through the Noether theorem in light of Gelfand and Fomin’s (1963) and
Bulman and its Kermel’s (1989) ideas (see C. Sulem and P. L. Sulem et al.’s book and
references therein®?*?"). Therefore, we first give the Noether theorem for nonlinear

Shr&iinger equation (5) at A(f ) = 0 according to C.Sulem and P.L.Sulem’s method!®4,
According to the Lagrangian Eqg. (16) of the nonlinear Shré@&linger equation (5) at
A(f ) =0, theaction of the system can be represented by

Aff} = (é O (F N 7 RE ) et (37)

whereL’ =L isthe Lagrange density function in Eq.(16). For convenience of cal culation,
we hereintroduce the following notations:
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z=(tx)=(zo2,L 2,) To=1.9=(To.T,.L ,1,)andF =(F1’F2)=(f ,f*)

where X'= x/+/h?/2m, t'=t/h. Thusthe action now becomes

At =L (F.IF)dz (38)

Under the action of atransformation T ® which depends on thesmall parameter € , we have
z ® 20z F ) ,F ® P4z [F ), where ZAndPfare assumed to be differentiablewith
respect to€ . When e =0, the transformation reduces to the identity. For infinitesimally
smale, wehave 2/& 7 +dz ,Po=F +dF . Atthesametime, T¢,F (z)® ﬁ/f(z()j’bythe

transformation group T ¢, and the domain of integration D is transformed into [3(9 then have
¥
At} e Ao gL (Pfdd2

where ﬁ" denotes differentiation with respect to i Obvioudy, the change
dA= K{fof’- A{f} inthelimit of @ under the above transformation can be expressed as

_a Y M ¢ fdz,
dA=Q Q& (Foff- L (F TF)idz+QQL'(F.IF)a o ~dz (@)

u=0 u

Z,,Z
where we used the Jacobian expansion M =1+ g Yoz, , '(If/qﬂﬁ/l),in
zoZy) veo 12,

the second term on the right-hand side has been replaced by the leading term L' (F ,F )in

the expansion. Now define

dPo=P4(z)- P4( ) =1.F dz, +0F (2) w0
§o0(z)- ,F, (2) = (- 1 ) o) +1.§%(z)- Fi(2)8
with

“Zm% oo

Wethen have
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L'(I%ﬁ@/l)-L'(F,ﬂF)=£gl§/?(z_)-Fi(z)H ﬂ(ﬂ )eﬁ@%( ) 1.5 (2)4

T1F,
qL ,Tdz L’
=g T BT | 19, Sy 0
= (bd)- LG [ﬂ(ﬂ NI L

Eqg. (39) can now bereplaced by

XL T é v i

dAZ A= - F.dz+3a T Y
QOLYF, " 1z, eeﬂ(ﬂ':)wd QQyz, & Tyr) e
where we have used
1 fdz, 9L L' 2
L'dz,)=L'—~+—1",F.dz, +——-T..Fdz,.
R Rk A Ty
qa 1€ u € qu
fdF =" & F g ¢ dF. dF
1(1.F) 2, (LF) 6 Tz, &I(LF) G

Using the Euler-Lagrange eguation, the first term on the right-hand side in the equation
of d Avanishes. We can get the Noether theorem, i.e.,if the action Eq. (38) is invariant
under the infinitesmal transformation of the dependent and independent variables

f ®f +df ,z ® +dz wherez =(t,X,...x; ), thefollowing conservation law holds****

& -—T g t=oon T aax +— 1= S - gy Ji=o
e T(LF) ‘4 g v ILF)E Tz, "

(42)

interms of dF . defined in Eq.(40).
If theaction isinvariant under theinfinitesimal transformation

t'® T=t'+dt'(xt'f ),x ® x=x+dx (x,t'f),
f(x,t")®f (T,x)=f (t',x)+df (t'x),

Then, C. Sulem et al®*¥ obtained that
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9L o — ' \ e = . u
b (19, + 6 >l x- of )+ 0= (1,679, + R dx-of )- Lot g @)
eff . it a
isaconserved quantity.
For the nonlinear Schré@linger equation in Eq.(5) with A(f )=0 in the nonlinear
guantum mechani cs, we have

E :I_f*,andﬂ_l_*:-l_f
T, 2 W 2

where L =L is given in Eq.(16). C. Sulem et al'* obtained the some conservation laws and
invariance from the Noether theorem.

a) Invariance under time trandation and energy conservation law

Theaction Eq.(38) isinvariant under the infinitesimal timetranslation t' ® t'+dt'
withdx' =df =df * =0, then equation (42) becomes

SV o ARy Cone e U P
ﬂtg\lf it -E(ff ) +v (xt)f fH-N>(ft.Nf +f;Kif ) =0
This results in the conservation of energy

E= C‘gﬁf " - g(f )7+ (x,t)f F D = constant
2

b) Invariance of the phase shift or gauge invariance and mass conservation law

It is very clear that the action related to the nonlinear Schr@&linger equation isinvariant

under the phase shift f =€% , which for infinitesimal q gives df =igf , with
dt' =dx' =0. Inthis case, Eq. (18) becomes

7+ Ri (FRE - £ )} =0 (42)

This results in the conservation of mass or number of particles.

N = C‘y |2dx' = constant
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and the continuum equation
where ] isthe mass current density
=i (PRI - £°RiF)
¢) Invariance of space trandation and momentum conservation law

If theaction is invariant under an infinitesimal spacetrandation X' ® X' +d X with
dt'=df =df * =0, then Eq.(40) becomes

1o §(FRF - £ RE)+Ro{2(Rf " Rif +Rf - R+ L)} d=0
This leads to the conservation of momentum
P=igff Nif *- £ 'Rif )dx' = constant.

Note that the center of mass of the microscopic partidesis defined by

()= oo,

Wethen have
NIX) S P = ¢ K (FRF - £ R )l
dt' _O(ﬂ1|| X_-OX 8 B X
= G(FRF - £°Rif )ax =P =-J =- ok (a4)

This is the definition of momentum in dassical mechanics. It shows clearly that the
mi croscopi ¢ particles described by the nonlinear Schr@linger equation have the feature of

classical partides.

d) Invariance under space rotation and angular momentum conservation law.

If the action Eq. (38) isinvariant under a rotation of angle dq around an axis II such that
dt=df =df =0and dx’ =dq|I X , this leads to the conservation of the angular
momentum
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! - \r', * ™ ) * 1
M =igx” (FRf - FRF")dx

Besides the above, C.Sulem et a'® aso derived another invariance of the
nonlinear Schré@linger equation from the Noether theorem for nonlinear Schrodinger
equation.

€) Galilean Invariance
If theaction isinvariant under the Galil ean transformation

X' ® x¢=x"-ut't'® t¢=t',
f(xt)®f 0(x@t01)=-i§%ux'+%lj ﬁt'gf (x.t),

which can also retain the nonlinear Schré@linger equation invariance. For an infinitesimal
velocity u,dX' =-ut'dt'=0 and df =f G xGtd- f (x,t')=- (i/2uxf (xt) .
After integration over the space variables, equation (42) leads to the conservation law Eq. (44)
which impliesthat the velocity of the center of mass of the microscopic particles is a constant.

It is also the same, even though the particle is in motion. This exhibits clearly that the
mi croscopi ¢ particles have the particul ate nature.

3.5. The Nonlinear Quantum M echanics Describes Hamiltonian Systems, the
Behavior of which is Determined by a Set of Canonical Conjugate Variables.
The States of Particles Can be Described by Lagrangian and Hamilton
Equations

Using the above variables,f and f~ ,one can determine the Poisson bracket and write
further the equations of motion of microscopic particles in the form of Hamilton’s equations.
For Eq. (5) with V (I ,t) = A(f ) =0, thevariables f andf * satisfy the Poisson bracket*27

{f @(9.F O(y)} =id*d (x- y) (45)
_yalAdB dBdA D
whee {AB} =10 e o o of

The corresponding Lagrangian density L in Eq. (16) associated with Eq. (5)
with A(f ) = 0 can bewritten in terms of f (x,t)and its conjugate f * viewed as independent

varigbles. The action of the system is the functions of f ,Nf f, and f*,Nf " f, and is
represented by Eq.(37). In accordance with the theorem of variation, the variation of the
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action for infinitesmal df anddf ~ isof the form

o el i o .o
dA= g—df +——dNf +—df ,;dx dt' +c.c. 46
Q‘Qeﬂf INf ﬂft‘ tH (46)

wheeL’ =L,  qL'/T(NFf ) denotes the vector with components IL'/T(1,f ) (i =1,2,3).
After integrating by parts, we get

N

S Ol ool 6 g L éL’ U
dA= e—— NX——— = f dxdt' +g_—df 3 +c.c. 47
QO BN 5 E Egj &t ﬂo “

A necessry and sufficient condition for a function f (X,t') with known values

f (X' ,t;,)and f (X' ,t'l) to yield an extremum of the action A isthat it must satisfy the Euler-

Lagrange equation

' o eefL’ Lo

— =N — +ﬂ B 48
N TN IR T o

Eq.(48) gives the nonlinear Schré@&linger equation (5) if the Lagrangian density Eq. (16)
is used. Therefore, the dynamic equation, or the nonlinear Schr&linger equation in
nonlinear quantum mechanics can be derived from the Euler-Lagrange eguation, if the
Lagrangian function of the system is known. This is different from linear quantum mechanics,
in which a dynamic equation, or the linear Schré@&linger equation, cannot be obtained from
the Euler-L agrange equation. This is aunique property of nonlinear quantum mechanics.

The above derivation of the nonlinear Schr&linger equation based on the variational
principle is a foundation for other methods such as the “the collective coordinates”, the
“variational approach”, where a solution is assumed to maintain a prescribed approximate
profile (often bel-type) **". Such methods greatly simplify the problem, reducing it to a
system of ordinary differential equations for the evolution of a few characterigtics of the
systems. Therefore, this method is extensively used.

On the other hand, the Hamilton equation can also obtain from the Hamiltonian density of

this system in Eq.(17). In fact, we can obtain from Eq.(17) #*%°
[ 2
dH _-h—sz +V(X)f - b(f*f)f
df * 2m

WhereH’ =H. . Then from Eq.(5) A(f ) =0 wecan give
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1 2
in I _ 91 T Qe ev(xf - b o
Mm df * 2m
Thus ihﬂzﬂ,orih‘ﬂf*:-ﬁ (49)
it df * i df

Equation (49) isjust the complex form of Hamilton equation. This form can also represent
as normal form denoted by canonical coordinate and momentum of the particle Thus we have
to introduce the following canonical coordinate and momentum:

Liat), pe ™ g olfo) pe T
350 gy Tal ) P

Thus, the Hamiltonian density of the system in Eq.(17) takes the form

H =é_ plﬂt‘qi - L

and the corresponding variation of the Lagrangian density L =L’ can bewritten as

o dL' dL’ X dL’
M) ggyd () ©0

oL' = dag + =
Qg (1.9)

Tdg " d (Nqi
From Eq.(50), the definition of p , and the Euler-Lagrange equation in such a case,

RSP (S
p[of fiNg;, Tt
one obtains the variation of the Hamiltonian in the form of

dH = é_ dﬂt‘qid P - Tl pda )dX'

Thus, the canonical form of Hamilton equation can be derived:

19 _ i/ g, . %:-dH/an (51)

fit!

This is also interesting. It shows that the nonlinear Schr&linger equation of dynamics

describing microscopic particle can be obtained from the classica Hamilton equation in
nonlinear quantum mechanics, if the Hamiltonian of the system is known. Obviously, such
methods of finding dynamic eguations are impossible in the linear quantum mechanics. Asis
known, the Euler-Lagrange equation and Hamilton equation are important equations in
classical theoretical (analytic) mechanics, and were used to describe laws of motions of
classica particles. These equations are now used to depict properties of motions of
microscopic partides in nonlinear quantum mechanics. This shows sufficiently the dassical
features of microscopic particles in nonlinear guantum mechanics. On the other hand, from
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this study, we seek new ways of finding the equation of motion of the microscopic particlesin
nonlinear quantum mechanics, i.e, if the Lagrangian or Hamiltonian of the system is known

in the coordinate representation, then we can obtain the equation of motion of MIP from the
Euler-Lagrange or Hamilton equations® %%,

3.6. The Motion of Particles Obeys a Classical Rule of M otion in Nonlinear
Quantum M echanics

Now utilizing Eg. (5) with A(f ) = Oand its conjugate equation we can obtain™ >%
d‘¥f*f o= g P d¢="¥ f*ﬂf o f 2
E¢Q¢ X‘LdX Q tJ X¢dX Q ( t¢)x¢ X IQ{ ﬂ_X¢[ x&&

VEL- [F e BE ()7 VE'TF Jebee=ig) £ £ aixe
x&e X Q ﬂX¢
We here utilize the following relations and the boundary conditions:

Q (F e T ad dIXC=0, Q b(f “Ff e +f T )dxC=0

Liny (x6t9 = [imf .(x¢t9 =0 3 & £ ¢ dxe= const.|_jprf "x¢,.= Ljf sox¢ =0

|x¢® ¥ x¢® ¥ X¢® ¥ xq® ¥

P

wheaef =—, - =——5 . Thus, we can get
X ﬂx

XXX

4 e oo (e +r xe W axe=- 21 £ axe
dteO 0 Yqte Tt Q7

According to the above definition, in the systems, the position of mass centre of
¥ o, ¥ o,
microscopic partide is represented by < x¢>= Qf x'f dxd@/ Qf f dxd, the veocity of

mass centre of microscopic partide is also denoted by

d

1
m ﬂ_{Qf x¢dxﬂ¥Qf de(}—-ZQj j QXWQf f dx¢

Thus, the accel eration of mass centre of microscopic particle can also be denoted by
2

& o= 2 S xS F TG =- 2 FVf dht=- 2< V. > (s2)
ae T Tae % e O A0 N e

PDF SCf-ffiH "pdfFactory Pro™ i FH AL www. fineprint.cn



http://www.fineprint.cn

26 Pang Xiao-feng

it f s normalized, i.e, c‘if “f dx¢=1, then the above condusions also are not changed.

V(<xe), _IV(x9 v

>, then we have to expand —

However,generall eaking,
J Y J 1 < x¢> ixe ix¢

at x(=<x(>hy

+ =
fx¢ 7 < x¢> f<xt>* 2 1 < x¢>*

V(<9 = V(< xt>) +(x¢ < x¢>) —ﬂz\/(< x2) 1 (x¢ < x¢>)? —ﬂ3\/(< x¢>) +L

Finding the expectation valueto the above formula, thus we get

VG, _V(sx®) 1 (x¢ < x¢>)* > TV (< x>)
x¢ f<xt> 2 1 < x¢>°

For the microscopic particle, describing by EQ.(9), the position of the particle, that is, the
position of the mass center of the particle is known, is just < x’>= X('):constant, or 0 .When
the motion of the mass centre of the particles is only studied, we may calculate the value
reated to the mass centre in finding the value of < (x¢ < x¢>)* > .Thus we can obtain

W(X‘9> = IVEXR) oy, we can get

< (x¢ < x¢>)? >=0. Hence, <

x¢ 1< x¢>
d_2<x¢>:-2ﬂv(<x¢>) ormd)2<°=-ﬂ (53)
dt¢ < x¢> dt %

where xq=<x> is the position of the mass centre of MIP. Equation (53) is a Newton-type
classical equation of motion. This shows clearly that the motion of the mass centre of MIP
satisfies the Newton law in nonlinear quantum mechanics 2", Therefore, we can say that the
mi croscopi ¢ partid e has the property of the classical partide If V =constants in Eq.(5) with
2
A(f ) =0 we can get from Egs (52)-(53) that md— < x¢>= - ZM
dt¢ 1 < x¢>
shows that the MIP moves in uniform velodity in space-time. For the solution Eq.(9) we can
get that the acceleration of the mass centre of MIP is just zero because V =0. Therefore, the
velocity of the partide is a constant. In fact, if we insert Eq. (9) into Eq.(53) we can obtain

=0. This

vg= d < x¢>/dt¢=Ve=constant. This shows clearly that the velocity of the uniform motion

of MIP is just the group velocity of the soliton. This property of the motion of microscopic
partide shows that its energy and momentum can beretained in the motion process.
The above equation of motion of microscopic partides can also be derived from the

nonlinear Schrélinger equation (5) with A(f ) =0by means of another method. As is
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known, the energy E and momentum of MIP described by the nonlinear
Schrélinger equation  (5) with A(f )=0 ae denoted by Eq.(18) and

P=- ic‘i(f fo-fof )dxd, respectively. For this system, the energy E and quantum

¥
number N, = ¢ if |2 dxdareintegral invariant. However, the momentum P is not conserved

and has, from the above result, the following property:

dP ¥ T .2 > 2
- — ¢=- —_— ¢
e Q, a4 (XG) ﬂxéf | dx ZQ ﬂxéf | dx (54)

where the boundary condition is f (x§® O as [x¢® ¥ . For dowly varying
inhomogeneities (in comparison with particle scale (soliton)), i.e. We>>L, where L is the
inhomogeneity scale, W, is its width, expanding Eq. (54) into a power series in VVS/L and
keeping only the leading term, we can get

P _ LIV

(55)
dt¢ x
where x§is the position of the center of the mass of the macroscopic particle. Eq. (54) or (55)

is essentially consistent with Eqgs.(52)—(53) which are in the form of the equation of motion
for adassical particle. Indeed, if we write the particle (soliton) solution as

f (X(th) =j (X¢- X(@,'[G)eip(m X§)+ia (56)

we assume that it is a solution of Eq. (5) at A(f )=0. Insarting Eq. (56) into the

representation of P(x,t), we get P = pN,. Let p= ?j—):ibe the vdocity of the center of the
partide, then equation (55) and P = pN indicate that the center of mass of the microscopic
partide moves like a dassica partide in a weakly inhomogeneous potential field
V (x§) according to

d2x0¢__2ﬂv d’% _ v

m =

R 57
dt¢ Ix¢ e % 57

Thisisthe sameas Eq. (53) and it is Newton’s equation for a classical particle.
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3.7. Features of Motion of Microscopic Particlesin Several Special Potentials

We now consider some particular cases. Let V (x@) =a xtin Eq.(5) with A(f ) =0,

where a is constant, and make the following transformation 637 %27,

f(x6td =f o e 02 xe=008p- ath, 108
Then Eq. (5) with A(f ) =0 becomes
if ot f ot 2f €°F €0, (58)

where b = 2. The exact and complete solution of the above equation is well known. We
can thus obtain the complete solution of the nonlinear Schré&linger equation with

V (x4 = ax¢. Its single soliton solution is given by

f =2hsechgh (xd> axte+2até - x(gt)H

Ol (59)

it daxt€ +4(x2 - hz)t¢+q0 0
th

expugz(x atd) xé
€
When V, (x® =a *x¢ , we can get

f =20 sech} h(x¢ X, - 4:—hsing2a (te tg)g\g'
|
: _ (60)

exp}:i g2><(x¢ X, - cos2a (t¢ tg)- %sing4a (t¢ tg)g+an > (te t31)+q§gu%
T e

u

In each of the above two cases, with two different external potential fields, the
characteristics of maotion of the microscopic partice can be determined according to Eq. (57).
The accel erations of the center of mass of the microscopic particleis given by

g V((x4)

= 6
e 0 (x d} - Z2a = constant (61)

for V (x® =a x¢,and
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d?x¢ )
=-4a 62
dt¢ X (62

for V (x®) =a *xE¢ =% 2527 respectively.

Theseresults can aso Ibe obtained using the following method. From de Broglierelation
E =hu = hwand P = hk for microscopic particles which represent the wave-corpuscle
duality in quantum theory, the frequency W retainsits role as the Hamiltonian of the system
even in this complicated and nonlinear systems and

dw _ fw

di¢ Tk

o dt xd, e

dk . ﬂwa x¢ 0

asin the usual stationary media®®2?. From the above result we also know that the usual
Hamilton equation in Eq. (34) for the nonlinear quantum mechanical systems remain valid for
the mi croscopic particles. Thus, the Hamilton equation in Eq. (34) can be now represented by
another form:

o o« (63)

dk ﬂWJ dx¢_ fw
dt¢  qx¢ "dt¢ gk

x¢
in the energy picture, where k = g/ fxdis the time-dependent wave number of the
microscopic particle, w = - g/t is its frequency ,q is the phase of the wave function of

the mi croscopic particles. From Egs. (59) and (60), we know that

da*t¢

q=2(x - at§)xe - daxt€ +4(x2-h2)t¢+qo,

forV(x')=aX'and

&’ Esin4a(t' - t'0)+4h2(t' - t'0)+q;),

q=2zx cos2a(t'- t‘o)+(};
édg

for V ()( ) = a’x?, respectively. From Eq.(59) we can find that for V ()( ) =ax,

k=2(x - at0),
w = 2ax¢ 4(2 - atd’ +(2n)" = 2ax¢ k*+(2n)".
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Thus, the group vdocity of the microscopic particleis
%0 Tw .
o —d—,ozﬂ— :4(2x - at )
da  Ik|,

and its accdleration is given by

-
d—,;%:d—k,:-Za:constant, here(x, = %) (64)
dt dt

For Eqg. (60) , we have
V(x') =a’x? k=2x cos2a (t' - t(',),
w=4axx sin2a (t'- to) 4x? cosda (t' - to) 4’
=2ax'(4x2- kz)]/z- 2k2+4(x2- hz),
Thus, the group vdocity of the microscopic particleis
v, =W _ax ko 2k:2ax'ctgé2a(t'- t')U- 4x cos€a (t'- t')U
“T Mkl x (- K ax? € °/u € o

whileits acceleration is

=-2a./4x?%- k? = - 4xa sing’Za (t'- to)H

k

dk _ _ Tw.
dt’ %

-
d—%=%,here(%= xo)

since —
dt
Wehave
dk dzﬂ/_ Lz
E—F—AzasmgQa(t tO)H,
and
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Finally, the acce eration of the microscopic particleis

25 k
ddt).( =?j%=-4a27'. (65)

Egs. (64) and (65) are exactly the same as Egs.(61) and (62), respectively, which shows
that Egs. (53) or (55)and (57) have the same effects and function as Egs.(51) and (63) in
nonlinear quantum mechanics. On the other hand, it iswell known that a macroscopic object
moves with a uniform accel eration, when V (X ) = ax which corresponds to the motion of a
charge particlein a uniform dectric field, and when V (X ) =a ?x? which is a harmonic
potential, the macroscopic object performs localized vibration with a frequency of 2a and an
amplitude of 2x /a , and the corresponding classical vibrational equationis X =X, Sinwt ,
with w = 2a and xO =X /a . The equations of motion of the macroscopic object are
consistent with Eq. (57) and Egs. (61) — (62) or (64)-(65) for the center of mass of
mi croscopi ¢ particles in the nonlinear quantum mechanics. These correspondence between a
mi croscopi ¢ particle and a macroscopic object shows'?? that microscopic particlesin
nonlinear quantum mechanics have exactly the same properties as classical partides, and their
motion satisfy the classical laws of motion. We have thus demonstrated clearly from the
dynamic equations (nonlinear Schrodinger equation), the Hamiltonian or Lagrangian of the
systems, and the solutions of equations of motion, in both uniform and inhomogeneous
systems, that microscopic partides in nonlinear quantum mechanics really have the corpusde

property.

3.8. Mechanism and Rules of Collision of the Microscopic Particle

As is known, the most obvious feature of macroscopic particles is meeting the collision
law or conservation law of momentum. Therefore, we often aso use the law to determine the
parti culate feature of macroscopic partides. In Figure 1(d), we show al so the collision feature
by numerical simulation method for the solution of the nonlinear Schrodinger equation(NLSE)
(5). From this figure, we see that microscopic particle satisfies the collision law of
macroscopic partides. As a matter of fact, Zakharov et al.*” demonstrated that the solutions

of Eq.(5) with V(x,t)= A(f ) =0 obey dso the collision law of macroscopic particles by

theoretical analysis at both b>0 and b<0. Ther results show that when microscopic partides
collide with other particles, the faster particle moves forward by an amount of phase shift, and
the slower one shifts backwards by an amount of phase. The total shift of the particles is
equal to the algebraic sum of those of the pair during the paired collisions. At the same time,
experiments and numerical simulations also show during the collision that the MIPs interact
and exchange positions in the space-time trajectory as if they had passed through each other.
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After the collision, the two MIPs may appear to be instantly trandated in space and/or time
but otherwise unaffected by ther interaction. The trandation is called a phase shift as
mentioned above. In one dimension, this process results from two MIPs colliding head-on
from opposite directions, or in one direction between two particles with different amplitudes.
This is possible because the velocity of a particle depends on the amplitude. The two MIPs
surviving a collision completely unscathed demonstrates dearly the corpuscle feature of the
microscopic partides. This property separates nonlinear quantum mechanical microscopic
partices (solitons) from partides in the linear quantum mechanical regime. Therefore, the
rule of collision of MIPsisthe same as that of classical partides.

In the following, we describe a series of laboratory and numerical experiments dedicated
to investigate the detailed structure, mechanism and rules of collison between the
microscopic particles described by the nonlinear Schré&inger equation in nonlinear
guantum mechanics. The properties and rules of such collision between two solitons of NLSE
(5) at V(x,t)= A(f ) =0 have been first studied by Aossey et al.*. Both the phase shift of

the microscopic particles after their interaction and the range of the interaction are functions
of the relative amplitude of the two colliding solitons. The solitons preserve the shape after
the collision. We here discuss the rule of collision of two MIPs depicted by nonlinear

Schrodinger equation(5) at V(x,t)= A(f ) =0 by means of Aossey et a’s method and resuts.

For the microscopic particles described by the nonlinear Schré&linger equation (5) with
V(x)= A(f ) =0, wewill limit our discussion to the hole (dark) spatial partides (solitons)
with b < 02?1 Aossey et al now denoted the hole-particle by

f (x¢td) =f0\/1- B? sech? (x e (66)

where

u
Btanh (x9 U,x ¢= m(x¢ X, - uttﬂ)
1- B?sech?(x ") §

Q
—
X
~
1
(720
3I
-
D> (D> (D~

Here, Bis a measure of the amplitude (“blackness”) of the solitary wave (hole or dark
soliton) and can take a value between - 1 and 1,u, is the dimensionless transverse velocity of

the particle center, and mis the shape factor of the partide. The intensity ( Iy ) of the solitary
wave (or the depth of the irradiance minimum of the dark soliton) is given by B’f 2. Aossey

et al. showed that the shape factor m and the transverse velocity U, are related to the

amplitude of the particles, which can be obtained from the nonlinear Schr&linger equation
in the optical fiber to be
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Indlf o
n,

where n,and n, arethe linear and nonlinear indices of refraction for the optical fiber material.

nt =n, |n,| B 5 u, » % (1 Bz)

We have assumed |n,|f ; = n,. When two microscopic partides (solitons) described by
NLSE collide, their individual phase shifts are given by

N :JT L (\/1 B? +/1- Bz) +(B,+B,)’
| |”2|f52mJ”o'3 (\/1 B +,/1- Bz) +(B,- B,

(67)
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Figure 2 Numericd smulation of an overtaking collision of equi-amplitude dark solitons. (a) Sequence
of thewaves at equd intervalsin thelongitudind postion Z. (b) Time-of-flight diagrams of the signal.

The MIP (soliton) interaction can be easily investigated numerically by using a split-step
propagation agorithm which was found, by Thusrston et al.*®, to closdy predict
experimental results. The results of a simulated collison between two equi-amplitude
mi croscopi ¢ partices (solitons) are shown in Figure2 (a), which are similar to that of general

MIPs (bright solitons) depicted by Eq.(5) at V(x,t)= A(f ) =0 and b>0 as shown in Figurel..

We note that the two particles interpenetrate each other, retain their shape, energy and
momentum, but experience a phase shift at the point of collision. In addition, thereisaso a
wdl- defined interaction length in z along the axis of time tthat depends on the relative
amplitude of two colliding MIPs. This case occurs also in the collision of two KdV solitons.
Cooney et al.* studied the overtaking collision, to verify the KdV soliton nature of an
observed signal in the plasma experiment. In the following, we discuss a fairly simple model
which was used to smulate and to interpret the experimental results on the MIPs (solitons)
described by NLSE and KdV solitons.

The modd is based on the fundamental property of solitons that two MIPs (solitons) can
interact and collide, but survive the collision and remain unchanged. Rather than using the
exact functional form of sechx for MIPs (solitons) described by NLSE, the MIPs are
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represented by rectangular pulses with an amplitude A, and a width W, where the

subscript | denotes the | th microscopic particles. An evolution of the collision of two MIPs
is shown in Figure3(a) by Aossey et al.!® . In this case, Aossey et al. considered two
solitons(M1Ps) with different amplitudes. The details of what occurs during the collision need
not concern us here other than to note that the M1Ps with the larger-amplitude has completey
passed through the one with the smaller amplitude. In regions which can be considered
external to the collision, the MIPs do not overlap as there is no longer an interaction between
them. The microscopic particles are separated by a distance, D= D,+ D, , after the
interaction. This manifests itsef in a phase shift in the trajectories depicted in Figure 3(b).
This was noted in the experimental and numerical results. The minimum distance is given by
the hal f-widths of the two microscopic partides, D3 W, /2+W, /2. Therefore,

D, ? ‘%’ and D, ? ‘% (68)

o =
b e, 2

P = $2 P —}1

* 4
[ i
=
[4=1]
ot — _
——— Ly ——————— 3= 1 =
Lo :
I rﬁ

=

Frony Do —- __-!{-:__,:;-/‘4_‘131
i
T -]
T

I

Figure 3 Overtaking collision of solitons. (2) Modd of the interaction just prior to the collison and just
after the collision. After the collision, the two M IPs are shifted in phase. (b) Time-of-light diagram of
the signas. The phase shifts are indi cated.

Another property of the microscopic partides (solitons) is that ther amplitude and width
are related. For the microscopic partides described by the nonlinear Schr&linger equation
with b<0inEq. (5) of V(x,)= A(f ) =0 (W »1/m), Aossey et al obtained

BW, = constant=K (69)

Using the minimum values in Eq.(68), we find that the ratio of the repulsive shifts for the
mi croscopi ¢ particles described by the nonlinear Schr @&linger equation is given by
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& = (70)
D2

0 |50

Results obtained from simulation of the kind of solitons are presented in Figure 4(a). The
solid linein the figure corresponds to Eq.(70).\

24 theorelival resall - . 4 4 theoretical rosulre,
- L
L
- a4 °
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Figure4 Summary of the ratio of the measured phase shifts as a function of the ratio of amplitudes. (a)
For the solitons described by NLSE, the solid line correspondsto Eq.(67). (b) KdV solitons, thedata
are from (1) this experiment, (2) Zabusky et a. [31], (3) Lamb’g[41] and (4) Ikezi et a.’s[42] results.
The solid line corresponds to Eq.(74).

In addition to predicting the phase shift that results from the collision of two microscopic
partices, the model also alows us to estimate the size of the collision region or duration of
the collision. Each microscopic particles depicted in Figure3 travels with its own amplitude-

dependent velocity U, . For the two microscopic particles to interchange their positions during

atime DT , they must travel adistance L, and L,,

L, =u,DTand L, =u,DT (71)
Theinteraction length must then satisfy the relation

L=L,- L =(u,-u,)DT 2 W +W, (72)

Equation (71) can be written in terms of the amplitudes of the two MIPs. For the MIPs
described by NLSE, combining Egs. (68) and (72), Aossay et al. obtained

€1 1u
L3 K ag—+— (73)
léBl B, 0
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In Figure 5(a), the results for the MIPs described by NL SE are presented. The dashed line
corresponds to Eq. (73) with B, =1and K, = 6. The interaction time (solid lin€) is the sum
of the widths of the two microscopic particles, minus their repulsive phase shifts, and
multiplied by the transverse velocity of MIP 1. Since the longitudina veocity is a constant,
this scales as the interaction length. From the figure, we see that the theoretical result

obtained using the smple collision modd is in good agreement with that of the numerical
simulation.

The discussion presented above and the corresponding formulae reveal the mechanism
and rule of the collision between MIPs depicted by NLSE in the nonlinear quantum
mechanics.

To verify the validity of this simple collison model, Aossey et al. studied the collision of
the solitons using the exact form of sech’ for the KdV equation u, +uu, +dé,, =
and the collision mode shown in Figure3. For the KdV soliton they found that

AJ.(V\/J.)2 constant =K, andD Wﬁ \/Z (74)

where A; and W, are the amplitude and width of the j th KdV soliton, respectively.
Corresponding to the above, Aossey et al. obtained for the interaction length.

éf fz ( "

Aossey et al . compared their results for the ratio of the phase shifts as a function of the
ratio of the amplitudes for the KdV solitons, with those obtained in the experiments of Ikezi,
Taylor, and Baker'*?, and those obtained from numerical work of Zabusky and Kruskal'®"
and Lamb™!, as shown in Figure4(b). The solid line in Figure 4(b) corresponds to Eq. (74).
Results obtained by Aossey et al. for the interaction length are shown in Figure 5(b) as a
function of amplitudes of the colliding KdV solitons. Numerical results (which were scal ed)
from Zabusky and Kruskal are aso shown for comparison. The dashed line in Figure 5(b)

corresponds to Eq. (75), with A =land K, =1.

003 {u) 1og Lhk)

L faralary sule)
g
.
Liemi
]
3

bl Tk
oL L0 |

PDF L "pdfFactory Pro™ i FH AL www. fineprint.cn



http://www.fineprint.cn

The Behaviours and Properties of Microscopic Partidesin Nonlinear Systems 37

Figure5. Summary of the measured interaction length as a function of the amplitudes. (a) The particles
described by NLSE, the dashed line correspondsto Eq, (70) with 2 —Land <1 = by kav
solitons, the data are from (1) this experiment and (2) Zabusky et a.’sresult [31]. The dashed line
corresponds to Eq. (72) with Ke=A =1.

Since the theoretical results obtained by the collision model based on macroscopic bodies
in Figure 3 are consistent with experimental data for the KdV soliton, shown in Figs. 4(b) and
5(b), it is reasonable to believe the validity of the above theoretic results of moded of collision
presented above , and results shown in Figs.4(a) and 5(a) for the microscopic partides
described in the nonlinear Schré&dinger equation which are obtained using the same model

as that shown in Fig 3. Thus, the above colliding mechanism for the microscopic partices
shows clearly the classical corpuscle feature of the microscopic partides in nonlinear
guantum mechanics.

3.9. Features of Reflection and Transmission of Microscopic Particles at
I nterfaces

As mentioned above, microscopic particles in nonlinear quantum mechanics represented
by Eqg. (5) also have wave property, in addition to the corpusd e property. This wave feature
can be conjectured from the following reasons.

1) Egs (5)—(8) are wave equations and their solutions, Egs. (9)—(10) and (15) are
solitary waves having the features of traveling waves. A solitary wave consigts of a
carrier wave and an enveope wave, has certain amplitude, width, velocity, frequency,
wavevector, and so on, and satisfies the principles of superposition of waves,
although the latter are different when compared with classical waves or the de
Brogliewaves in linear quantum mechanics.

2) Thesolitary waves have reflection, transmission, scattering, diffraction and tunneling
effects, just as that of classical waves or the de Broglie waves in linear quantum
mechanics. At present, we study the reflection and transmission of the microscopic
partides at an interface.

The propagation of microscopic particles (solitons) in a nonlinear nonuniform media is
different from that in uniform media. The nonuniformity can be due to a physical confining
structure or two nonlinear materials being juxtaposed. One could expect that a portion of
microscopic partides that was incddent upon such an interface from one side would be
reflected and a portion would be transmitted to the other side due to its wave feature.
Lonngren et al.“® observed the reflection and transmission of microscopic particles (solitons)
in a plasma consisting of a positive ion and a negative ion interface, and numerically
simulated the phenomena at the interface of two nonlinear materials. To illustrate the rules of
refl[e(]:tion and transmission of microscopic partides, we discuss here the work of Lonngren et
al.1

Lonngren et al. Y simulated numerically the behaviors of solitons (M1Ps) described by
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NLSE (5) a V(x)= A(f)=0 They found that the signal had the propety of a

soliton. These results are in agreement with numerical investigations of similar problems by
Aceves et a. A sequence of pictures obtained by Lonngren et al. ¥ at uniform temporal
increments of the spatial evolution of the signal are shown in Figure 6. From this figure, we
note that the incident microscopic partices propagating toward the interface between the two
nonlinear media splits into a reflected and transmitted soliton at the interface. From the
numerical values used in producing the figure, the relative amplitudes of the incident, the
reflected and the transmitted solitons can be deduced.

«— TINE

IPISTATICERE

Figure 6. Simulation results showing the collison and scattering of an incident solitons described by
NLSE (top) onto an interface. The peak nonlinear refractive index changeis 0.67%0 of the linear
refractive index for theincident solitons and the linear offset between the two regionsis aso 0.67%.

They assumed that the energy that is carried by theincident soliton (MIP) is all
transferred to either the transmitted or the reflected solitons and noneis lost through radiation.
Thus

Einc = Eref + Elrans

Lonngren et al. gave approximatdy the energy of soliton(MIP) by

where the subscript | refers to the incident, reflected or transmitted solitons( MIPs). The
amplitude of the soliton(MIP) is A, and its width is W, . The characteristic impedance of a
material is given by Z_ . Hence, the relation of energy mentioned above can be written as

2 2 2
hw — Aef eref + AransW (76)

Zd inc Z_ v trans

cl cll
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Since AW, = constant for the soliton described NLSE (see Eq. (69) inwhich B; is
represented by AJ ), we obtain the following relation between the reflection coefficient

R=A/Ainc and thetransmission coeffident T = A .o/ A,

1= R+éT (77)

cll

for the MIPs described by NLSE (5) at V(x,t)= A(f ) =0. Thereation of T versusR is
shown in Fig.7.

— ] fea—
E}:.t,‘.':‘-ef:

Figure 7. Sequence of the signals detected asthe probe is moved in 2 mm increments from 30 to 6 mm
in front of the reflector. Theincident and reflected KdV solitons codesce a the point of reflection,
which is approximately 16 mm in front of the reflector. A transmitted soliton is observed closer to the
disc. Theamplitude scae at 8 and 6 mm isincreased by 2 from the previous traces.

To verify further this idea, Lonngrel et al.**! conducted experiments with KdV soliton.
They found that the detected signal had the characteristics of a KdV soliton. Lonngrd et al [**
showed a sequence of pictures taken using a small probe at equal spatial increments starting
initially in a homogeneous plasma sheath adjacent to a perturbing biased object, as shown in
Figure7. From this figure, we see that the probe first detects the incident soliton and some
time later the reflected soliton. The signals are observed, as expected, to coalesce together as
the probe passed through the point where the soliton was actually reflected. Beyond this point
which was at the location where the density started to decrease in the steady-state sheath, a
transmitted soliton was observed. From Figure?, the relative amplitudes of incident, the
reflected and the transmitted solitons can be deduced, which was done by the author.

For the KdV solitons, there is also AW/ = constant (see Eq.(74)) . Difference from
Eq.977) of NSE soliton, for the KdV soliton, Lonngrd et al obtained
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1= R + Lo 732
el

The re ations between the reflection and the transmission coefficients for the soliton( MIP)
described by NLSE and KdV soliton are shown in Figure8, with the ratio of characterigtic
impedances set to one. The experimental results on KdV solitons and results of the numerical
simulation of MIPs described by NLSE are also given in this figure. The computed data are
shown using triangles. Good agreement between the analytic results and simulation results
can be seen. The osdllatory deviation from the analytic result is due to the presence of
radiation modes in addition to the soliton modes. The interference between these two types of
modes results in the oscillation in the soliton amplitude. In the asymptotic limit, the radiation
will spread and damp the oscillation, and result in the reflection —transmission coefficient
curve falling on the analytic curve

0 s T T : )
Q =] 1

Figure8. The rdationship between the refl ection and transmission coeffici ents of a microscopic particle
(soliton)given in Eq.(78). The solid circles areresults from the laboratory experiment on KdV solitons
and the hollow circleis Y. Nishida’sresult. The solid triangles are Lonngren et a.”s numerica results
for the particle (soliton) described by NL SE.

Figure 8. The rdationship between the refl ection and transmission coefficients of a NLSsoliton( MIP)
given inEqs(77) and (78) are shown in solid line and dashline, respectively. The solid circles are results
from the laboratory experiment on KdV solitons and the hollow circleis Y. Nishida’s result. The solid
triangles are Lonngren et a.”’s numerica results for the particle (soliton) described by NLSE.

The above rule of propagation of the microscopic particlesin nonlinear quantum
mechanics is different from that of linear wavesin classical physics. Lonngren et al.*® found
that a linear wave obeyed the following relation:

1= R + 2o 72 (79)

ell
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This can be also derived from Eq.(76), by assuming the linear waves. The width of the
incident, reflected and transmitted pulses V\/J will bethe same. For thelinear waves

-Z
+Z

27

cl — cll

, ch | + ch

cll

Z

cll cl

Thus, Eq. (79) is satisfied. Obvioudy, Eq. (79) isdifferent from Eq. (77). This shows dearly
that the microscopi ¢ particles in nonlinear quantum mechanics have a wave feature, but it is
different from that of not only linear dassical waves and the de Broglie wavesin linear
guantum mechanics but also KdV solitary wave.

3.10. The Uncertainty Relation in Linear and Nonlinear Quantum M echanics
and Quantum Fluctuation Effect

a) Theuncertainty relation in linear quantum mechanics
The uncertainty relation in linear quantum mechanics is an important representation and

also a problem that has troubled many sdentists. Whether this is an intrinsic feature of
microscopic particles or a result brought by the linear quantum mechanics or by the
measuring instruments, it results in a long-term controversy in physics. How do we
understand this correctly? Obvioudly, it is closely related to the wave-corpuscle duality of
mi croscopi ¢ partides. Since we have established nonlinear quantum mechani cs which differs
from linear quantum mechanics, we could expect that the uncertainty relation in the nonlinear
guantum mechanics is different from that in linear quantum mechanics [26-27]. The
significance of the uncertainty relation can be revealed by comparing the linear and nonlinear
guantum theories.

It is well known that the uncertainty relation in the linear quantum mechanics can be
obtained from [1-6]

I (x) = d(xDA+iDB)y (rr,t)rolrr 3.0 (80)

or

In the coordinate representation, A and Il3are operators of two physical quantities, for
example, position and momentum, or energy and time, and satisfy the commutation
rdation gA, ég =iC,y (xt) andy " (x,t) are wave functions of the microscopic particle
satisfying the linear Schrodinger equation and its conjugate equation, respectively,
F= (DA><+DB)2 , (DA=A-A, DB=B-B, Aand B are the average values of the physical
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quantities in the state denoted by y (X,t)), is an operator of physical quantity related to
Aand B ,x isared parameter.

After some simplifications, we can get

I=F=DAX?2 + 2DADBX + DB?3 0

or

DAX 2 +Cx +DB?2 0 (81)
Using mathematical identities, this can bewritten as

- T2
DA?DB? 3 % (82)

This is the uncertainty relation in linear quantum mechanics. From the above derivation
we see that the uncertainty relation was obtained based on the fundamental hypotheses of
linear quantum mechanics, including properties of operators of the mechanical quantities, the
state of partide represented by the wave function, which satisfies the linear Schré&&inger

equation (1), the concept of average values of mechanical quantities and the commutation
rdations and eigenequation of operators. Therefore, we can condude that the uncertainty
rdation Eq. (82) is a necessary result of the linear quantum mechanics. Since the linear
guantum mechanics only describes the wave nature of microscopic partid es, the uncertainty
rdation is a result of the wave feature of microscopic partides, and it inherits the wave nature
of microscopic particles. This is why its coordinate and momentum cannot be determined
simultaneously. This is an essential interpretation for the uncertainty relation Eq. (82) in
linear quantum mechanics. It is not related to measurement, but closely related to the linear
guantum mechanics. In other words, if linear quantum mechanics could correctly describe the
states of microscopic particles, then the uncertainty rdation should also reflect the
peculiarities of microscopic particles.
Equation (81) can bewritten in the following form:

2
) —
& ARG O _ (DADB)
F=DA? x+—DA_PB% +DB*- +—1-30
é DA? 5 DA?
or
— 2 =\?
2, &8 (¢
DA’ gx +——=+ +DB*- *=L-3 0 (83)
é 4DA? 5 4DA?
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—— ——\? =
This shows that DA’ 1 0, if (DADB) or C2/4is not zero, else, we cannot obtain

Eq.(82) and DA2DB2 >(DADB)2 because when DAZ =0 , Eg. (83) does not hold.

Therefore, (DAZ) 1 0 isanecessary condition for the uncertainty relation Eq. (82), DA? can

approach zero, but cannot be equal to zero. Therefore, in linear quantum mechanics, the right
uncertainty relation should take the form [26-27]:

— \2
DA?DB? > (T (84)

b) Theuncertainty relation in nonlinear quantum mechanics

We now return to the uncertainty relation in nonlinear quantum mechanics. Since
microscopic partides in NLQM is a soliton and they have wave-corpuscle duality, and there
is no fundamental hypothesis in the nonlinear quantum mechanics, derivation of the
uncertainty relation should be different from that in the linear quantum theory given above
We can also expect that the uncertainty relation in nonlinear quantum mechanics 2% is
different from Eq.(84).

We now derive this rdation for position and momentum of a microscopic particle

depicted by the nonlinear Schrodinger Equation (5) with V(x,t)= A(f ) =0, with asolution ,
f ., asgivenin Eq.(9), which is now represented by

f.(X,t') =2h+/2/bsech[2h (X~ X,) - 8hxt']exp[- 4i(x* - h*)t- 2ixx+iq] (85)

The function f (x',t') is a square integrable function localized a X, = 0in the position

space. If the microscopic partideis localized at )<0 1 0, it satisfies the nonlinear Schrodinger

equation,
. 1 2
if +=f  +[f[f =0 (86)
t 2
for b=1. The Fourier transform of this function %" is
fs(p,t')=i 3 fs(x',t')e"pxl (87)
\NZp
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It shows that fs(p,t') is localized at p in momentum space. For Eq.(87), the Fourier

transform is explicitly given by
N_ [P ép u 4i(h2+x2—px/zﬁ)t'—i(p—zﬁx)xb
f t)=.[=secha—(p- 2v/2x );e (88)
(p0) = B soonE-(5- 20 )}
The results in Egs. (87) and (88) show that the microscopic particle is localized not only
in position space in the shape of soliton, but also in the momentum space in a soliton. For

convenience, we introduce the normalization coefficient A, in Egs. (85) and (88), then

obvioudy Af \/,h ,the position of the mass centre of the microscopic particle, < >

and its square, <X >,at t'=0aregiven by

(x'}zc‘idx'hs(x')r, <x'2>:c‘idx' x2[f , (x7)

We can thus find that

(x) =B, (%)= 0

respectivdy. Similarly, the momentum of the mass center of the microscopic
partide, ( p), and itssquare,< p2> , aregiven by

+a2Rh X

(p)=¢, pIfo(p) db. (p*)=), P°[f.(p)| b
which yied
(p)=16mhx,  (0%)= 222 Ans a2z )

The standard deviations of the position Dx'= <x'2>- <x'>2 and the momentum

Dp = < p2> -{ p>2 are given by respectively.
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2

i 9ehZ’

A)A +hx2(1- 4Vn A2
(Dx ) f Xo( ) o

(Dp)* = 321247 ~—h3+hx (1 4\/51/%)

GZ
(JO

Thus we obtain the uncertainty relation between position and momentum for the
mi croscopi ¢ particle depicted by nonlinear quantum mechanics, Eq.(86)

iy — P
Dx == 9
6 (1)

This result is not related to the features of the microscopic partide (soliton) depicted by
the nonlinear Schrodinger equation in nonlinear quantum mechanics because Eq. (91) has
nothing to do with characteristic parameters of the nonlinear Schrodinger equation.p in Eq.

(91) comes from of the integral coefficient ]/ \/2p . For a quantized microscopic partice,
p in Eq. (91) should be replaced by p h, because Eq. (87) is replaced by

1

(P> oo

The corresponding uncertainty reation of the quantum microscopic particle in nonlinear
guantum mechanicsis given by

c‘i dxf (x',t")e ™"

= = (92)

The uncertainty reation in Eq. (92) or Eq. (91) 21 is different from that in linear
quantum mechanics Eq. (84), i.e, DxDp > h/2. However, the minimum value DxDp = h/2
has not been observed in practical systems in linear quantum mechani cs up to now except for
the coherent and sgueezed states of microscopic partides. The relation EQ.(91) cannot be
obtained from the solutions of linear Schrodinger equation. Practically, we can only get
DxDp > h/2 from Eq.(84), but not DxDp = h/2, in linear quantum mechanics.

¢) Theuncertainty relations of coherent states
As a matter of fact, we can represent one-quantum coherent state of harmonic oscillator
by [26-27]

a)=exp(ab’ - a'b)o)=e z/zaJLl "0,
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in the number picture, which is a coherent superposition of a large number of
mi croscopi ¢ particles (quanta). Thus

)= 2 (2 +a). (alia)=ihmirz(a - ).

and
<a|)?2|a>:ﬁ(a*2 +a?+23a’ +1), <a|f)2|a>:hL2m(a*2+a2- 2aa’ - 1),

where

= —(6+5+), p=i —(6+-6),

and b* (6) is the creation (annihilation) operator of the microscopic particle (quantum),

a and a” are some unknown functions, W is the frequency of the particle, mis its mass.
Thuswe can get

(D¢)° =, (Dp)" ===, (Dx)"(Dp)" =—- (99

Dx 1
— =——, or Dp=(wm) Dx
Dp wm

For the squeezed state of the microscopic particle: |b ) = exp gb (b+2 - b2)8| 0), which
is a two-microscopic partid e (quanta) coherent state, we can find that

_hmw

<b|Dx2|b> e4b,<b|Dp2|b>—Te' ,

 2mw
using a similar approach asthe above.. Here b isthe sueezed coefficientand |b| <1. Thus,

DxDp=2, % =$e8b, or Dp=Dx(wm)e® (94)

This shows that the momentum of the microscopic particle (quantum) is squeezed in the
two-quanta coherent state compared to that in the one-quantum coherent state.
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From the above results, we see that both one-quantum and two-quanta coherent states
satisfy the minimal uncertainty principle. This is the same as that of the nonlinear quantum
states in nonlinear quantum mechanics. We can condude that a coherent state is a kind of
nonlinear quantum state, and the coherence of quantais a nonlinear phenomenon, instead of a
linear effect.

As is known, the coherent state satisfies the classical equation of motion, in which the
fluctuation in the number of particles approaches zero, which is a classically steady wave. In
fact, according to quantum theory, the coherent state of a harmonic oscillator at time t can be
represented by

¥ ihnwt
|a,t> |Ht|a> (b b+3/2) |a> m\m/z la /2é a'e

—|n)
=efae ™). (l=(v)0)

n=0 \/n_
This shows that the shape of a coherent state can be retained during its motion. Thisisthe
same as that of a microscopic particle (soliton) in nonlinear quantum mechanics. The mean
position of the partide in the time-dependent coherent stateis

X- —[x H]+( );éx,H],HEﬁL

a

> ‘/ |a|cos wt+q)

(95)

<a t|x|a '[ < | ght/hy, |Ht/h|a>_ a
“{ :)=(e
138y 0

where q = tan’ Cy s x+iy=a, [x,H] = hp’ [pH]=-ihmw?x.
2

x+ P LiexaL
m 2!

Comparing (95) with the solution of a classical harmonic oscillator

p> 1
X= cos(wt+qg), E=-"—+=mw’x?
2 ( q) 2m

we find that they are similar, with

E =hwa? =<a |H|a>- <0|H|0>, H=hW§?)+b+%%

Thus, we can say that the center of the coherent state-packet indeed obeys the classical

law of motion, which is the same as the law of motion of microscopic partides in nonlinear
guantum mechanics discussed in Egs. (70)-(71).
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We can similarly abtain

. 2h é 10
(a,t|pla,t) =-2mhw a|sin(wt +q),<a,t|x2|a,t> :anafcos2 (vvt+q)+2§,

(a.t[pla ) = 2mw Ga*sin® (wiva) + 4

and

[Dx®)] =——, [Dp(t)]* ——mNh Dx(t)Dp(t)—— (%)

This is the same as Eq. (92). It shows that the minimal uncertainty principle for the
coherent state is retained at all times, i.e., the uncertainty relation does not change with time
t.

The mean number of quanta in the coherent stateis given by

ﬁ:<a|Nl|a>:<a a>:a2, <a|N |a> “+alf’

Therefore, the fluctuation of the quantum in the coherent stateis

o[- (o ) =8

which leadsto
E :i = 1.
n [af

It is thus obvious that the fluctuation of the quantum in the coherent state is very small.
The coherent stateis quite closeto the feature of soliton and solitary wave.

These properties of coherent states are also similar to those of microscopic partides
described by the nonlinear Schrodinger equation |, the f * - equation , or the Sine-Gordon
equation in nonlinear quantum mechanics. In practice, the state of a microscopic particle in
nonlinear quantum mechanics can always be represented by a coherent state, for example, the
Davydov’s wave functions, both 1D, >and ID, >, ¥ and Pang’s wavefunction “"* of
exciton-solitons in protein molecules and the wavefunction in acetanilide “*%%:; the
wavefunction of proton transfer in hydrogen-bonded systems ¥ and the BCS’s wave
function in superconductors' *¥, etc. Hence, the coherence of partides is a kind of nonlinear
phenomenon that occurs only in nonlinear quantum mechanics. It does not beong to systems

described by linear quantum mechanics, because the coherent state cannot be obtained by
superpasition of linear waves, such as plane wave, de Broglie wave, or Bloch wave, which
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are solutions of the linear Schrodinger equation in linear quantum mechanics. Therefore, the
minimal uncertainty relation Eq. (92), as well as Egs. (94) and (96), are only applicable to
microscopic partides in nonlinear quantum mechanics. In other words, only microscopic
partices in nonlinear quantum mechanics satisfy the minimal uncertainty principle. It reflects
the wave-corpuscl e duality of microscopic partides because it holds only if the duality exists.
This uncertainty principle also suggests that the position and momentum of the
mi croscopi ¢ partide can be simultaneously determined in a certain degree and range. A rough

estimate for the size of the uncertainty can be given. If it is required that f  (x,t) in Eq.(85)
or f(p,t)in Eq. (87) stisfies the admissibility condition i.e, f (0)» 0, we choose
X =140, h= 300/0.253/2\/5 and ;<0 =0in Eq.(85) (In fact, in such a case we can get
f (0)»10° , thus the admissibility condition can be satisfied). We then get

Dx » 0.02624 and Dp » 19.893, according to (91) and (92). These results show that the

position and momentum of microscopic partides in nonlinear quantum mechanics can be
simultaneously determined within a certain approximation.

Pang et al. ¥ also calculated the uncertainty relation and quantum fluctuations and
studied their properties in nonlinearly coupled e ectron-phonon systems based on the Holstein
modd by a new ansatz induding the correations among one-phonon coherent and two-
phonon squeezing states and polaron state proposed by himsdf. Many interesting results were
obtained. The minimum uncertainty relation takes different forms in different systems which
are rdated to the propeties of the microscopic partides. Neverthdess, the minimum
uncertainty relation in Eq. (92) holds for both the one-quantum coherent state and two-quanta
squeezed state. These works enhanced our understanding of the significance and nature of the
minimum uncertainty relation.

(d) Quantum fluctuation of particles described by quantum nonlinear Schrodinger
equation

Finally, we determine the uncertainty relation of the microscopic partide described by
quantum nonlinear Schrodinger equation, arising from the quantum fluctuation effect in

the nonlinear quantum field theory. The quantum theory was discussed by Lai and Haus et.
al®®" %27 hased on the nonlinear Schrodinger equation. They think that a superposition of a

subclass of bound state | n, P} , Characterized by number of the boson, for example, photon or

phonon, and the momentum of the center of the mass P, can reproduce the expectation
values of the microscopic partide (soliton) in the limit where the average number of the
bosons (phonons) are larger; Lai e.a. refer to these states formed by the superposition of

|n,P) as a fundamental soliton states. We here discuss the quantum fluctuation of

MIP(solitons) depicted by NLSE (5) at V(x,t)= A(f ) = 0by means of Lai et al’s method™™”.

In nonlinear quantum theory, the quantized dynamic equation in the second quantized picture
isgiven by

ih%fﬂ%x,t) =. h—zﬂ—zf%gt) + 26fB(x, )%, )P 1) @7)

2m x>
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The operators f%(,t) and f$(x,t) are the annihilation and creation operators of field of
aquantum at a“point ” x and “time ” t, they satisfy the commutation relation:

1B, £), B0 ] =d (x- x"), [, 1), 1B )] = [P, 1), B )] =0 (98)

The corresponding quantum Hamiltonian is given by

L= ;_; O B0, B, ) dbe + bFP(x, 1B, 1), £y, ) (99)

In the Schrodinger picture, the time evolution of the system is described by
'hd F IE| F 00
“IEY=H. 1
S IF)=H.|F) (100)
with the commutation relation:
(1), (001 = d (x- x*), 1), (] = [ P(x), (] =0 (10)

where fﬂ%x) and f$(x) are the field operators in the Schrodinger representation. The
corresponding quantum Hamiltonian is given by

He= :—m O TR0 dx-+ b BB BB dx (102)

The many-partide state | F ) can be built up fromthe n- particlestates given by

o <1
IF)=a nano\/?fn(xl..., xn,t)f$(xl)...f$(xn)dx1...dxn|0> (103).

The quantum theory based on Eq.(103) describes an ensemble of bosons interacting via a
d - potential . Notethat H preserves both the particle number.

N= B0 dx (104)

and the total momentum
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P=i 2 (‘%%fﬂg( x)fsfx) - f$( x)%fﬂfx)gdx (105)

Lai et al.™ proved that the boson number and momentum operator commute, so that

common el genstates of Fl, P and N exist in such a case In the case of anegative ratiob,
the interaction between the bosons is attractive and Hamiltonian Eg. (97) has bound states. A

subset of these bound states is characterized soldly by the eigenvaluesof N and P:

X ¥ 5
fap =N, eng?pa X; +D a |>ﬁ - XJ-|+, (106)
e j=1 1£ij<n [4/]
n-1
where Nn = m
Yo
Thus
£, (L % t) = oppg, (P) f.p(x,L %, t)e P, (107)

expf- (p- p)’/[2(0p)
Vv (op)’

}

where g,(p) =4/g(p)e "™, and g(p) =

Using f,  given in Eq. (106), we find that | n, P) decays exponentially with separation
between an arbitrary pair of bosons. It describes an n- particle soliton moving with
momentum P =hnpand energy E(n, p)=np®- |b|2 (n2 - 1) n/12. By construction, the

quantum number pin this wave function is related to the momentum of the mass centre of
the ninteracting bosons, which is now defined as

X= L|®rr01c‘y<f (xF (x) dx(e+ N) (108)

with gX,PH=Ih
Thelimit of e ® Oisintroduced to regularize the position operator for the vacuum state.
We are interested in the fluctuations of Egs. (104), (105) and (106) for a state
|F (t)> with a large average Boson number and a well-defined mean field. Kartner and

Boiven™ decomposed the field operator in its mean value and a remainder which is
responsible for the quantum fluctuations.
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(9=l 40)

fA*(x)|y (0)> +fA1(x),gAl(x),fAl*(x%:d (x- xﬂ),gl(x) £ (x(1)8=0

(109)
Since the field operator f is time independent in the Schrodinger representation, we

can then choose t = Ofor definiteness. Inserting Eq.(109) into Egs.(104), (105) and (108) and
neglecting terms of second and higher order in the noise operator, Kartner et al. obtained that

K=, + DA, = ¢pix{(F™* (x))(F (). D= gsix (" (x))f', (%)) +ce.

P=hn, p, + hn,Dp, p,= IE c‘;jx<fAX+ (x)><fA(x)>, Dp = IE c‘;jx<fAX+ (x)>fAl (x)+cc,

Y mo o) 1 hY "4 " S 1 hY "4 ~

X=x, g?t ~+DRX, =— cplxx<f (x)><f (x)> Dx=— cplxx<f (x)>f (x)+cc.
e o Ny Ny

where DX is the deviation from the mean value of the position operator, DA,Dp,and DXxare

linear in the noise operator. Because the third- and fourth-order correlators of fAl and fAf are

very small, they can be neglected in the limit of large n,. Note that DA,Dp,and DXare all

quadratures of the noise operator with Dpand DX being conjugate variables. To complete
this set, they introduce a quadrature variable conjugateto DA,

4= {00 px{f o)} +ee

Asis known, if the propagation distance is not too large, the mean value of the fidd is
given to thefirst order by the classical soliton solution

. 1 AU
(' (%)) =f g, (x,1) 8L+ O+
é e'b al
with
b N . . o én,|b u
foynO(x,t)=n°T||exng\/nI - ipft +ip, (x- x0)+|qOH seché%(x X, - 2p0t)g,
é Q
(110)
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and the nonlinear phase shift W, =n?[bf"t /4. It p, =x, =q, =0, Kartner et al obtained
the following for the fluctuation operatorsin the Heisenberg picture,

DA(t) = ¢px&F., (x) F+ c.cg, Dq(t) = c‘yixgif_q (x) Fg+ c.cg,
Dp(t) = c‘plng_ S(X) Fg+ c.cg, D&(t) = c‘plng_X (x) Fg+ c.cg,

with Fg=e"f (xt),
and the set of adjoint functions

b
f.(9= \/ﬂseCh(Xn)f (x) =

‘ _ino\/ﬁd

1
0= G RO 0=, s,

(

esech(xno)+xn0 sech(xno)u,

where X, =%no|b|x

For a coherent state defined by

A A

f (X)‘Fo,n0> :fo,no (X)‘Fo,n0>’ fl(x)‘f 0,n0> :0
where
‘Fo,n0>=eXp{C\ﬂXgo,nU(X)fA+(X)' on, t}|0
f o, as been given Eq. (110). Kartner et. al. further obtained that

0.6075
N

1.645 ¢

1 52\ _
2! <DX0>_ 2n,

3o

(D) =n, (Ddig)=

, (Dp3) =

where t 5 = 2/ng|b| is the width of the microscopic partide (soliton). The uncertainty
products of Boson number and phase, momentum and position are, respectively,
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(DA¢)(Ddg) =0.6075° 0.25,¢ (DS ) (DK) = 0.273 0.25,

Here the quantum fluctuation of the coherent stateis white, i.e.,
(L ()M)) = (F ()} =

However, the quantum fluctuation of the soliton cannot be written because the particle
interaction introduces correlations between them. Thus, K&ner and Boivin®®® assumed a
fundamental soliton sate with a Poissonian didtribution for the boson number

n

n
P, =—‘I’e'"D and a Gaussan distribution for the momentum Eq.(73) with a width
n!

<Dp§> = n0|b|2/4m, where mis a parameter of the order of unity compared to no. They

finally obtained the minimum uncertainty values:

~ 025 025€é€ el d 0.25 _0.25nt 2 aelou
2\ — =" x O—;’, d &2 0 O
(0us) o) n g e (%)= )" 31 &n, o

up to order 1/ n, for the corresponding initial fluctuations in MIP (soliton) phase and timing.
Thus, a t=0 the fundamental soliton with the given Boson number and momentum
distributions is a minimum uncertainty state in the four collective variables, the Boson
number, phase momentum and position, up to the terms of O( 1/ N, ), which are of the form

[57,26-27]

<Dﬁoz><Dd§>=o.25§L+o§%%,and nZ (Dp2) (DR ) = 02531+09—0§ (111)

These are the uncertainty relations arising from the quantum fluctuations in nonlinear
quantum mechanics of MIP described by NLSE. They are the same as Egs.(92)-(94).
Therefore, we can conclude that the uncertainty relation in NLQM takes the minimum values
regardless whether a state is coherent or squeezed, a system is classical or quantum.

In light of the above discussion, we can distinguish the motions of partices in the linear
guantum mechanics, nonlinear quantum mechanics, and classical mechanics by means of the
uncertainty relation. When the motion of the particles satisfiesDxDp >h/2 or p/6, the
partides obey laws of motion in linear quantum mechanics, and the partices are some waves.
When the motion of the particles satisfiesDxDp = h/12 or p /6, the particles obey laws of
motion in nonlinear quantum mechanics, and the particles are solitons, exhibiting wave-
corpusd e duality. If the motion of the particles satisfies DxDp = O, then the particles can be

treated as classical partides, with only corpuscle feature. The nonlinear quantum mechanics
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introduced here makes physics more complete. Therefore, we can say that the nonlinear
guantum mechanics is a new theory which is a new physical branch, it bridges the gap
between the classical and linear quantum mechanics.

4. EIGENVALUE PROBLEM OF MICROSOPIC PARTICLESIN NLQM

4.1. The Eigenenergy Spectrum of the Hamiltonian of the Systems

In linear quantum mechanics (LQM), because the Hamiltonian of the systems is
independent of the state wavefunction of the partide, the eigenenergy spectrum of the
Hamiltonian operator of the systems can be easily obtained from its egenequation,

My (xt)) =Ely (xt)), where|y (x,t)) is its eigenwave-function in coordinate or

partide number representation. It also is just a time-independent linear Schrodinger equation
in the coordinate representation. However, in the NLQM we find that this method fails in the
coordinate representation because the wavefunction of state of MIP is contained in the
Hamiltonian operator of the systems; that is, the Hamiltonian operator depends on the state
wave vector of the MIP, thus exact eigenvalues cannot be obtained. Therefore, we must use
other methods to find the eigenenergies of the Hamiltonian operator of the MIPs. We have
two ways to get the eigenenergies of the Hamiltonian operator. The first is that the energy of

the MIP satisfying the NLSE can be obtained from E = i X,t)[HU[f (x,1))dx as used
O,

in Eq. (18), where H '= H is the Hamiltonian density of the systems which depends on the
wave functionf (X,t). Thesecond is that the Hamiltonian operator and state wavefunction of
partides are all given in partide number representation, then we can find the egenenergy
spectrum of the Hamiltonian operator from its eigenequation, ﬁ”f (x,t)> :E|f (X,t)>,

whether one mode motion or many mode motion. We often use the latter to find the
eigenenergy of the Hamiltonian operator of the system.

We know that the wave function of a microscopic particle can be quantized by the
creation and annihilation operators of the particle in the second guantum representation in

NLQM. Then the Hamiltonian of a system described by the wave functionf (x,t) can be

guantized by introducing creation and annihilation operators in the partide number
representation or second quantization representation. Thus, we can cal culate the eigenenergy
spectrum by using the eigenequation of the quantum Hamiltonian and corresponding
wavevector in number representation. This is basically how the eigenenergy spectra in the
NLQM can be obtained. For convenience, we express the nonlinear Schrodinger Eq. (5) with
A(f )=0in thefollowing discrete form:

. ﬂfJ h 2 . H
ih—L=-—(f .- 2 +f )-b|f Ff +V(j,Of,(j=123..3)

T 2mg (112)
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in lattice fidd, where rq is a spacing between two neighboring lattice points, | labes the
discrete lattice points, J is total number of lattice points in the lattice fidd of the system. The
vector form of the above equation in thelatticefidd is

2
ih- Vv (j,0F =-eMf - biag.(f, E.If, F . If , P)F

Tt ey (113)

where f_(x,t) is the column vector, f_(x,t) =Col.(f,, f, ,..f, ), whose complex
components, equation (113) is a vector NLSE with @ modes of motion. In Eq. (113), b is a
nonlinear parameter and @ is a number of motion modes that exist in the systems.
M=[M_ lisan a  a rea symmetric dispersion matrix, € =h?/2mr’. Here, nand | are

integers denoting the modes of motion. The Hamiltonian and the particle number
corresponding to Eq. (113), respectivey, are

H =8 &wf |- %b|fn|49- eA M. f f,ad N=Aaf (114)
e (] N=L

nt|

z

Il QJOQ’

1

where hw, = %/ 2mrZ +V(j.1).
We have assumed that V ( j,t) are independent of j and t. In the canonical second

guantization theory, the complex amplitude (f; andf ) become boson creation and

annihilation operators ( B, and ﬁn ) in the number representation. If jm,> is an eigenfunction
of a particular mode, then

Bim) = Jm +1|m, +1> B, |m, >=/m, [m, - 1>and B j0>=0.

Since no particular ordering is specified in Eq.(114) we use the averages:

ff® Z(88, +B8)
2
and
1I'® S@86,6 886 +68,86 8588 6886 BEHE)

with the Boson commutation rule B, B - B'B. =1, Eq. (114) then becomes
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M= 8 [(hw, - Sb) (BB, +1)- ToBB BIB,]- e M BB ws)
el 2 2 2 ey

M= BB +%) (116)
=1

From now on, we will use the notation[ m,, m,,...m, ] to denote the products of number

states| m > m, >...| m, >. Thus, dationary states of the vector NLSE (114) must be

eigenfunctions of both Ntand M. Consider an m-quantum state (i.e, the mth excited level,
m=m +m,+...m;), with m<a . An eigenfunction of A can be established as

f ) = C [m00,...0]+..+ C, [0,m00,...0+.+ C [000,..., m J+ ..+ C,, [m
1,m00,...0] +..+C,[000,..,011...1]. (117)

The number of terms in Eq.(117) is equa to the number of ways that m quanta can be
(m+a-1)

placed on @ dtes, which is given by P=
mi(a - 1)!

. Thewavefunction |f > in Eq.(117) is

an eigenfunction of M for any vaues of the C; . Thus, we are free to choose these
coefficients so that

MYyt >=g|f >. (118)

Equation (118) requires that the column vector C=Col.( C;, C,,... C,) sdtisfies the
matrix equation:

|[H-IE|C=0 (119)

whereH is apxp symmetric matrix with real elements. | isa pxp identity matrix, E isjust the
eigenenergy. Eq. (118) is an eigenvalue equation of quantum Hamiltonian operator (115) of

the systems. We can find the eigenenergy spectra E_ of the systems from Eq. (119) for given
parameters, €,W, , and b. Scott et al. ***" and Pang et al. ***¥ used this method to calculate

the energy-spectra of vibrational excitations (quanta) in many nonlinear systems, for example,
small molecules or organic molecular crystals and biomolecules. These results can be
compared with the experimental data.
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4.2. EIGENVALUE PROBLEM OF THE NONL INEAR SCHRODINGER
EQUATION

In LOM we know that the time-independent linear Schrodinger equation is an
eigenequation of the Hamiltonian operator in the coordinate representation. However, we do
not know the meaning of the eigenvalue problem of the nonlinear Schrodinger equation,
which is therefore a new problem. This problem comes from the Lax method. According to

this method, for any nonlinear equation, %f (rr,t): K(f (7,t)), where K(f (F,t)) is a

U U
nonlinear operator. If K(f (} ,t)) is related to two linear operators L and B, which depend
on f and satisfy the Lax operator equation:

uu uvu U u
iP=BL- LB=[B,L]. (120)

where t¢= % , then the eigenvalue | , which does not vary with time, and eigenfunction y

of the nonlinear equation is determined by the eigenequation of operator El asfollows

U U
Ly =ly ;ly =By (121)

Thus, the egenvector and eigenvalue of nonlinear systems are determined by the
eigenvector and eigenvalue of the above linear operators. In general, concerning any types of
nonlinear equation, its corresponding linear egenequation and time-independent eigenvalue

can always be found. For the NLSE in Eq. (5) with V(},t) = Alf )=0, the two linear

U U
operators Land B are

~ @t+ts 007 a&® f*o
L= —+ -
€0 1-spx¢ & 04
d 067 +fﬂ$’f|2/(1+s) if, O
0 15%€¢ € it -9

(122)
B=-

where s* =1- 2/b, x¢= x,/2m/h? . Thus the dgenvalue of NL SE is determined by

Iliy =ly. vy =?—1— (123)
ey
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Its corresponding solution can be found by use of inverse-scattering or another method.
The eigenequation corresponding to the NLSE (5) with V(x,t)= A(f )=0 and the Galil&
invarianceis found by the linear Zakharov-Shabat equation [31]:

iy +Fy =lsy (124)

This equation is obtained from EQs.(122) and (123), and is an eigenequation of
eigenfunctiony with an eigenvaluel and potential F , where,
ad 06 a0 fo
S, = - F=x. - (125)
0 -1p & 0g

where f  satisfies Eq.(5) with V(x,t)= A(f )=0. It evolves with time according to Eq. (121).
However, what are the properties of the eigenvalue problems determined by these rdations?
This deserves further consideration.

Asis known, the eigenequation is invariant under the Gdlile transformation. As a matter
of fact, if we substitute the following Galilei transformation:

f qp= "' (x¢tq, Y= x¢ ¢t (126)
into Eq. (125), then F istransformed into

& 006 @i 060

F &%= | 2+F(X(D iq/2 =
g 0 € @ (%] g 0 eq/ [} (127)

whereq = vx¢- %v2t¢+qo, here q, is an arbitrary constant. If the eigenfunctiony (X9 is

transformed as

& 0

5
'(Xp= o 128
y ‘(% g 0 e_lq,zg/(xfb (128)

then Eq. (124) becomes

y & +FG e=(1 - sy ¢
(129)

Itis dear that in the reference frame that is moving with the veocity v, the eigenvalueis

reduced to v/2 compared with that in the rest frame. It shows that the velocity of the MIP
(soliton) is given by 2A (I ). When q is constant, i.e,q =, the eigenvalue is unchanged
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because v=0. This implies that the NLSE is invariant under the gauge transformation,
f ¢= &%f (x9.

Satsuma and Y gjima ™ studied the eigenfunction of Eq. (124) and its properties, where
the eigenfunction satisfied the boundary condition, y =0 at [x]|—»co. The eigenvalues and the

corresponding eigenfunctions were denoted by | ,,1 ,,...,1 yandy ,y ,....y  , respectively.
For agiven eigenfunction, ¥ (X9, equation (124) reads

dy ((D+F(xtyy x9=1 sy ,.(x4,n=12,. (130)

y (X9 was expressed in terms of Pauli’s spin matrices S, and S ,,

y (x9=Aly (x9s,- Al (x9s, (131)

Multiplying Eq. (130) by s, from the left and taking the transpose of the resulting

equation, Satsuma et al [lget

v

dx(tsz-y;F*%:ilny;sl (132)

where the superscript T denotes transpose. Multiplying the above equation by y | from right

and Eq. (129) byy N S, from the left and subtracting one from the other, Satsuma and

Y ajimal™ obtained the following equation

¥
(- 1,) Oy sy ,dx'=0
-¥

The boundary conditions, y .,y , ® O as | x®® ¥ , were used in obtaining the above
equation. Thus,the following orthonormal condition was then derived

¥
O Sy X' =d,, (133)
¥

Satsuma and Yagjima further demonstrated that Eq. (130) has the following symmetry
properties.

(). If f (xO satisfies f (- x§ =f " (x9, then replacing x'by - X" in Eq. (130) and
multiplying again it by s ,from left , we can get
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sy (X9 +F (s (- X91=1 .05 y (- 0]

Since Sy (- XQ is also an eigenfunction associated with |, its behavior resembles

n L
that of y (X9 in the asymptotic region, i.e, Sy (- X§ -0 as | XUY® ¥, thusy  has the
following symmetry

SY  (-x9=dy (x§,0ory (-x9=d sy (- x9,(d =%1)

Therefore, if f (- x§ =f "(x9, theny (x¢ satisfies the symmetry property y (- X9 =

d sy (- x§ with d =+1. This can eesily be verified by replacing s, with S ,in the above
derivations.

(ii). If f (x§is a symmetric (or antisymmetric) function of X', i.e, f (- x§ = +f (x9,

theny ) (x§ =sy * (- x§ is the eigenfunction beonging to the eigenvalue - | |,

andy "?(x§ =s y * (- xQ is the eigenfunction belonging to the eigenvalue | .

The suffix s (or a ) to the eigenfunctiony ' indicates that f is symmetric (or

antisymmetric). Sincef (- x§ =f (x¢ , replacing x'with - X'in Eq. (130) and
taking complex conjugate, we get

sy (R OISy * (9= 1 8 sy (- x0]

Compared with Eq. (130), the above equation implies that - | n is also an eigenvalue and
the associated égenfunctiony >(x¢ is justsy ~, (- X§ , with the arbitrary constant. For

f(-x9=-f (x9, the same condusion is obtained by replacing s, with S ,in the above

derivations.
These symmetry properties are useful in providing a general view of the solution of Eq.

(5) with V(x,t)= A(f )=0. Asis known, the real part of the eigenvalue, X”, corresponds to
the velocity of a soliton and the imaginary part,h , the amplitude. Then, if f (x¢t¢=0),
whose initial value has the symmetry f (x¢t¢=0), ==f (- x¢t¢=0), breaks into the series

of solutions, the decay is bisymmetric, corresponding to the eigenvalues - | . If f (xQ)isred,
the above symmetry property yieds

y Wx§=s,[-dsy (- x§]=dsy 7 (x9
y W(-x§=s,[-dsy (- x9] =dsy P (x9
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i.ey ¥ (x9 has the same parity asy ,(x'), whiley "®(x9 has the opposite one. When
f(-x9=-f (x§ and | is pure imaginary (I . =-1), the égenvalues corresponding to
the positive and negative parity eigenfunctions degenerate.

(iii) .If f (X9 isreal, but not antisymmetric, then the eigenvalue | , is pureimaginary,

i.e, A(l )=0. From Eg. (130) and its Hermitian conjugate, Satsuma &t.al[68] found that

A(l )<nls,In>=<nA[f (x9]s ,|n> (134)
with
<mis ,I>= )y 15 ,x¢ (135)

where [F,s,] = 2iA(f )s ,was used. We see from Eq. (134) that A(l ) vanishes if f is
real and <m|s , [n>#0. When f is areal and an antisymmetric function of x¢, the symmetry
property (1) gives

¥
<n|32|n>:dzay :(_ X(Dslsls]y n(' X(DdX¢:- <n|52 |n>
Thus<n|s , |n>=0.

(iii). If theinitial valuetakestheform of f =€ R(x9 , where R(x9 is a real,

but not antisymmetric function of X', then all the eigenvalues have the common real
part, -v/2. This can be easily shown by the Galile transformation. In fact,

whenf (x¢t¢=0) = €"R(x¢, the solution does not decay to the series of solitons

moving with the different veocities, but form a bound state. In this case, the real

parts are common to al the eigenvalues, i.e, the rdative velodties of the solitons
vanish.

(iv).If f isarea non-antisymmertric function of x', it can be shown that
y (xg=ids y ,(x9 (136)

where d = £1. Because A(I ) =0, from the complex conjugate of Eq. (130), one can get

y ;(X(D M Sy . Substituting Eq. (136) into the normalization condition Eq. (133), one then
has d = +1. If theeigenvalue of Eq. (124) isred, i.e, | =X isredl, then

i%t+Fy =Xsy (137)
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and the adjoint functionof y .y =is y ", isalso asolution of Eq. (137), i.e.,

1 —
Y ry =
gt Y =xsy

From this and Eq. (137), Satsuma and Y ajima obtained the following
d + d — d e d ——
- = = = =0 138
dx¢6/ y) dx¢6/ y) dx¢6/ y) dx¢6/ y) (138)

Using the above boundary conditions, they found that the solutions of Eq.(124)
y (X¢x).y ,(x¢x), andy ,(x¢x) satisfy the following relations.

—+— —+

Y.V Y ,=Y Y ,=1ly ¥, =y .y ,=0

From y,=a(x)y ,+b(X)y, we get a= y,y, ad b= yly, , where
A 0 _ivxe a® O _ixxe
= = s '=- ¥ d = =
y ,(x¢x) 80 be as X and y ,(xtx) 81 be

_ Ad 6 .

y ,(x¢x) :80 € ™% as x'=¥ . As pointed out earlier, if a real (not antisymmetric)
(]

initial value is considered, the microscopic particle does not decay into moving solitons, but

forms a bound states of solitons pulsating with the proper frequency. Satauma and Y gima

developed a perturbation gpproach to investigate the conditions for the solutions to evolve

and decay into moving solitons.

If the wave functionf in Eq. (124) undergoes a small change, i.e,f ® f ¢=f +\f ,the
corresponding changein F isgiven by

e0 Dfo

ey 03

Then,| jandy  changesas | , +Dl  andy , +W ,respectively. To the first order in
thevariation, Eq. (124) becomes

i+ (F-1,8IDy ,+(DF - DI 8. , =0
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Multiplying the above eguation by y :S ,from the left and integrating with respect to
X'over (- ¥,¥ ) Satauma et all™ get

DI, =-i)y 1S ,DFy ,dx0=- ) y TA(D )s y ,dxG+ig)y TA(DI )y ¢
If f isared and non-antisymmetric function of X', Eq.(137) holds and
Dln=d<n|A(Df)ss|n>+id<n|A(Df)|n> (139)

Equation (139) indicates that if <n|A(Df )s ,|n>#0, the perturbation Df makes the
real part of the eigenvalue finite. That is, for theinitial value, f (x¢ + Df (x@, the solution of
the NLSE in Eq.(5) with V(x,t)=A(f )=0 breaks up into moving solitons with velocity
2A(Dl ). If f isred and is either a symmetric or an antisymmetric function of X', the
above symmetry properties of eigenvalues of the NLSE lead to

<n|A(D (x§)s 5 [n>=- <n]A(Df (- X))s 5 |n>

Therefore, if A(Df) is a symmetric function, <n|A(Df )s,|n> vanishes, i.e,
A(Dl ,) =0, and the soliton bound state does not resolve into moving solitons even in the

presence of the perturbation Df .
Satsuma and Y ajima™ also obtained the shifts of the eigenvalues of Eq.(124) under the
double-humped initial values, f (x¢t¢=0) =f ,(x¢ x§) +€%f ,(x¢+ x§), where f  is a

real and symmetric function of x¢x¢ and f, are real. The shifts of the eigenvalues were
finaly written as
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DI * =d[sin g <n|s f,(x¢+2x$)[n> msin(%o) <n|s f (x99 |n>]+

id[cosq, < n|f,(x¢+2x¢) |n > icos(qEO) < n|f,(x§e?d @59 | n ]
where

-d COS(%O) <n[f,(x9e” > [n> +id sin(%o) <nl|s f,(x9e>¢@*% |n>

= C‘iy ,"Ts Fy Mdx¢= C‘iy s Fy ,Mdx¢

-d cos(q,) < n|f ,(x¢+2x) [n>-idsin(@) < n|s f,(x¢+ 2x,) |n>
= c‘iy Vs F y (Mdx¢= C‘iy ;s Fy Mdx¢

here

F(X9=F,(x9+F,(x9,F,(x9 =s.f,(x¢ x¢)

F (X9 =[(cos(qy)s ; - sin(@)s ,If o (x&+ x§)
The corresponding eigenvalue equation is given by

Sy $+F O $0)=1 5y 809

The eigenfunction y ;(x(y satisfies the following symmetry and orthogonality requirements:

Y §(-x9=2d[cos(L)s , +sin(L)s,l $(9,d 1

0¥ (x9s y $(x9axe=0

When d,=0,f (X9 is real and symmetric, DI *) is pure imaginary, when g, =p , f (x9 is
real and antisymmetric, DI ) isreal,

A[Dl (@ (=p)] =nd <ns f ,(x9e”* "> |n>

) (140)
A[[] rfi)(q ozp)] =-d <n|33fo(x¢+2xg:)|n>

Thus, the solution of the NL SE (5) with V(x,t)= A(f )=0 decays into paired solitons and
each pair consists of solitons with equal amplitude and moving in the opposite directions with
the same speed. For arbitrary qo', we can see from Eq. (140) that the solution of Eg. (5) with
V(x,t)= A(f )=0 breaks up into an even number of moving solitons with different speeds and

amplitudes. Therefore, the eigenvalues of NLSE in nonlinear quantum mechanics are a very
complicated problem.
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5.Conclusions,the reasons establishing nonlinear quantum mechanics

In this paper we first presented the difficulties and problems of linear quantum mechanics.
A main difficulty is that microscopic partide has only wave, not wave-particle duality, and

u 2
dispersesin total space At the sametime, we haveto use Iy (r ,t)| to represent the probability

®

occurred particle at position I , the mechanical quantities are denoted by average values, and
the position and momentum of particle cannot be determinted simulatuously, and so on.
These results are incompatible with the traditional concept of particles and de Broglie
relations of wave-particle duality. Thus this result in long-time disputation in physics’”®. The
roots generating these problems are that the quantum mechanicsis too simplified and includes
not important interactions among the particles or between the partides and background fields,
thus, the Hamiltonian of the systems are not associated with the states of the particles.
Therefore, it is very necessary to deveop quantum mechanics for solving these problems.
Thisisfirst reason why we want develop and establish NLQM.

When the above fuandamental hypothesises of LQM are broken through we established
nonlinear quantum mechanics. Using its principles and theory, we study in detail some main
properties of microscopic particles in nonlinear systems. We give the invariance and
conservation laws of mass, energy and momentum and angular momentum for the
mi croscopi ¢ partices, find also the classical laws of motion of microscopic partides and that
motions of microscopic partides satisfy the Lagrangian and Hamilton egquations. From
dynamical equation —nonlinear Schrodinger equation and their solutions, the collision
processes of many micrascopic partides and ther reflection and transmission features on the
interface as wdl as the uncertainty reation of the motion of particles and quantum fluctuation
of particle numbers, we obtained a lot of new properties of motion of MIPs, which are
completely different from that in the linear quantum mechanics (LQM), for example the
partides possess the real wave-corpuscle duality, whose concrete image can be prefectly
manifested by figure 1 and Eq.(9), obey the classical rule of motion and conservation laws of
energy, momentum and mass, satisfy minimum uncertainty relation, can be localized due to
the nonlinear interaction, and its position and momentum can be also determined in certain
degree. Finally, we discuss further the eigenvalue problem of particles. These results are all
compatible with the traditional concept of partides and de Broglie rdations. This shows
clearly that the nonlinear quantum mechanics established by us is correct. This is second
reason why we want develop and establish NLQM.

Third reason establishing nonlinear quantum mechanics is that the nonlinear interaction,
b/2 (Ff*)?, in Eqs.(5)-(6) is extensively existent in all physical systems including most
simple hydrogen atom, only if we consider seriously the real motions of all particles and its
interactions. For example, for motions of eectrons, or excitons in the lattice in solid. we
ever freezed the lattices and use a mean or periodic potential to describe the effects of the
lattice field on the electrons or excitons in accordance with tranditional way in linear quantum
mechanics. Very obviously, this neglects completely the practical motion of the lattice and
simplified the interactions between them. If we consider exactly the effects and motions, then
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the dynamical equations of the electron or exciton and the lattice should be, respectivey,

represented by
2
int = DR sV o) +cf & (141)
It 2m x
and
F ,TF T 2
M - =-c—If 142
(ﬂtg 0 ﬂXZ) c ﬂX | | ( )

where f  denotes the state of a microscopic partide, such as eectron, or exciton, Eq.(141) is
its equation of motion. Equation(142) is the dynamics vibration of a background lattice field
with velocity v, , F denotes its displacement, C is a coupling interaction coefficient between
the electron and background lattice fidd. The physical foudation of EQs.(141)-(142) is as
follows. When the displacement of the lattice is occurred, the state of the electron is changed
through dectron-phonon coupling interaction, then the ectron or exciton moves in Eq.(141).
However, the couteraction of the coupling changes also the state of vibration of the lattice,
thusit movesin Eq.(142). From Eq.(142) we can find out

1 _ c

v i (143)
0

Inserting Eq.(143) into Eq.(141) yields the nonlinear Schrodinger equation (5) at A(f ) =0,

C2

where b = ————— . Thisisjust a mechanism generating the nonlinear interaction.
M (V- vp)

In other nonlinear quantum systems the nonlinear interaction can generate by means of

the following mechanism, i.e, the equation of motion of studied partide can be denoted by

2

ihdf=.
qt 2m
The equation of motion of other partides or field is represented by

N +V(x,t)f +cfF (144)

2
F
M (11“:2 - Vg

1°F e
=-c—1If (145)
ﬂxz) ﬂX2| |

where F is the wave vector of other particle, ¢ is a coupling coefficient between them. The

relation between the two motion modesis

C 2
=-__ - | (146>
M (V* - v§)| |
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Substituting Eq.(146 ) into Eq.(144) yieds aso the nonlinear Schrodinger equation (5)

2

with A(f ) =0, whereb = . The physical foundation of Eqs.(144)-(145) is as

M(Z )
follows. When the vibration of the particles or displacement of fidd occurs, the state and
probability distribution of the studied partide change due to the electron-phonon, or dipole-
dipole or Coulomb interaction in atoms between them. Thus the studied particle moves in
Eq.(144). However, the couteraction of the niteraction on the field or particle occur due to the
fluctuation of gradient of density of the studied particle arising from the difference of the
interaction at different sizes of displacement of the field. Thus the fidd is now in a forced
vibration depicted by Eq.(145). This is just the physical significance of EQ.(145). The
nonlinear interactions generating in atoms including hydrogen atom can be explained by this
mechanism.

The above mechanisms and results show dearly the nonlinear interaction comes from the
interactions among the particles or between the partides and background fidd. Since all
reglistic physics systems are composed of many particles and many bodies, the system
composed only of one partide does not exist in nature. In such a case, the nonlinear
interactions necessarily exist in any realistic physics systems including the hydrogen atom,
only if we consider serioudy the real motions of al particles and its interactions. Although
the nonlinear interactions have different intensity in different systems, it exists always. Thus
we cannot use linear quantum mechanics to study the features of motion of microscopic
partides, even though the nonlinear interactions are very weak as mentioned above. This
means that we should use nonlinear quantum mechanics in any a realistic physics systems.
The linea quantum mechanics is only an approximate and linear theory and cannot correctly
describe the states and properties of the microscopic particlein the physi cs systems of two or
many badies.This again exhibits clearly the important significances for deveoping NLQM.
Thisisaso another reason why we want develop and establish NLQM.

Therefore, to develop and establish NLQM could solve problems disputed by scientistsin
the LQM field for about a century!”®, can promote the development of physics and enhance
and raise the knowledge and recognition levels to the essences of microscopic matter. We can
predict that nonlinear quantum mechanics has extensive gpplications in physics, chemistry,
biology, polymers, and so on.
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