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Abstract -- We used a nonlinear Schrodinger equation to replace the linear Schrodinger equation
and to study further the natures and states of microscopic particles due to plenty of difficulties of
guantum mechanics. From this investigation we find that the states and properties of microscopic
particles are considerably changed relative to those in quantum mechanics. An outstanding and
obvious change is that the microscopic particles have a wave-cor puscle duality in such a case. The
solution of the nonlinear Schrodinger equation contains an envelop and carrier waves with
determinant frequency which can propagation in medium in a certain velocity. These display the
wave feature of particle. However the solutions have all a mass centre and possess a deter minant size
and mass, momentum and energy, which satisfy also the conservation laws of mass, momentum and
energy, at the same time, they meet the collison law of classical particles. These embody the
cor puscle featur e of the microscopic particles. Finally we seek the reasons and roots gener ating these
changes, which are due to the nonlinear interactions among the particles or between the particles
and background field to be considered in the nonlinear Schrodinger equation. The nonlinear
interactions provide a double-well potential to make the microscopic particle to be localized as a
soliton, and break also through the fundamental hypothesis for the independence of Hamiltonian
operator of the systems with wave function of states of particles in quantum mechanics. Therefore
we conclude that the microscopic particle should be described by the nonlinear Schrodinger
equation, instead of the linear Schrodinger equation, and the quantum mechanics should develop
towardsthe direction of nonlinear domain.

Index Terms -- Quantum mechanics, Microscopic particle, Schrodinger equation, Motion law,
Wave, Corpusclesduality.
values of the physical quantity are just eigenvalaé
. FUNDAMENTAL HYPOTHESISES OF these operators. The eigenvalues of Hermitean tgpera
QUANTUM MECHANICS are a real number. The eigenvectors corresponding t

: . . different eigenvalues are orthogonal with each othe
As is known, the states and properties of motion of g 9

. . ; X common eigenstates of commutable Hermitean
microscopic particles are depicted by quantum operators are constituted as an orthogonal and leben
mechanics, which is a foundation of modern science P 9 P

and was established by several great scientists asc et {¥. }. Any vector of statey (F,t) may be expanded
Bohr, Born, Schrodinger and Heisenberg, etc., & th py it into a series as follows

early 1900s [1-6]. The theoretical hypothesises of -
guantum mechanics can be outlined as follows. w(r) ZL: Cw (0 '

(1) The states of microscopic particles are rt)) = 1)
represented by a vector of stakés in Hilbert space, or |l// ( ’ )> ZL <‘// - |l// >|l// - >

a wave functiony (F,t) in coordinate representation. It where C. = .|#) is the wave function in

reflects the properties of wave of motion of the representatiorL. If the spectrum ol is continuous,
microscopic particles and can be normalized (i.e.,then the summation in Eq. (1) should be replacedrby

(W|w)=1). If B is a constant number, then both integral: | AL, Eq. (1) can be regarded as a projection

\‘ﬂ>and,8 &) describe a same state. of wave functiony(r,t) of the microscopic particle
(2) A mechanical quantity of microscopic particle, system, hence it is the foundation of transfornmatio
such as, coordinate momentunp and energiE, etc.,  between different representations in  quantum

is represented by an operator in Hibert space. Anmechanics. In the quantum state describedy()iy,t),

observable mechanical quantity corresponds 10 &g hrohability getting the' in the measurement bfis
Hermitean operator, its eigenvector of state contgra

basic vector in the Hibert space. This shows that t Col =p [ =@ ) in the case of discrete
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spectrum, the probability i§y [ )| dL in the case of [A, B] = (AB— BA) =-ih{ A B} (5)

continuous spectrum. In a single measurement of anywherei =+/-1 andh is the Planck’s constant. AandB

mechanical quantity, only one of the eigenvalues ofare substituted byq, and p, respectively, then

corresponding operator can be obtained, the symem o© 0o ) o o ]

then said to be in the eigenstate belonging to this[Pn dnl ==ihd,, . [P,, P,]1 =0, This reflects the

eigenvalue. fact that the values taken for physical quantitg ar
The two hypothesises are most important quantized. Based on this fundamental principle, the

assumptions and stipulate how the states of theHeisenberg uncertainty relation can be obtained by

microscopic particles are represented in quantum \C\Z
mechanics. (AA)? (AB)? = —— (6)
(3) A mechanical quantity in an arbitrary stite - 4
can only take an average value by where i C = [AB] and 44 = <A-<A>>. For the
w A}‘V coordinate and momentum operators, the Heisenberg
<A> - uncertainty relation takes the usual foraix 4p > h/2.
(wl|w) (6) The time dependence of a quantum stéieof a
a n microscopic particle is determined by the following
<A > = <l/l A > (2) Schrodinger equation
ha
aty(rt) is normalized, i.e., possible values of the —_—a\t/l>:H\l/l>
. . . . . I
physical quantityA may be obtained by calculating this 2
average. In order to find out these possible valaes or iha—w: - D2 +V (T )y (1)
wave function of states must be firstly known. ot 2m

Condition for determination value the quan#yhas in -
— q n where#°0?/ 2m is the kinetic energy operatof(r , t)

this state _i5<AA>2 = 0. Thus we can obtain the s the externally applied potential operator, mthis
eigenequation of the operatito be as follows mass of particlesy (F,t) is a wave function describing
. AwL =A' P, . () the states of particles, is the coordinate or position of
_From this equation we can determine the spectrum O%he particle, and is the time. This is a fundamental
eigenvaluesA’ of the operatoA and its corresponding  gynamic equation for the microscopic particle imet
eigenfunction®/, , the eigenvalues oA are possible space. However the Hamiltonian operator of the
values observed from experiment for this physical systems H is given by

quantity. All possible values & in any other states are N o A

nothing but its eigenvalues in its own eigenstaldds H=T+V=—I[?+V (8)
hypothesis reflects the statistical nature in the 2m

description of microscopic particle in quantum. where'F is an operator of kinetic energy an\%l an

(4) Hilbert space is a linear one and the meclahnic
quantity corresponds to a linear operator. Then

corresponding eigenvector of state, or wave functio e Hamiltonian of the systems, the states antifes.
satisfies the linear superposition principle, iié.two of the particle at any position and time is deteexi by
states“//1> and “/’z> are ones of a particle, then their Schrodinger equation (7), which is a linear equafar

operator of potential energy. In other words, the
properties of the systems at any time are detedriye

linear superposition the wave function//(r,t), thus we call ever it as linear
‘1// > = Cl“//1> + Cz“// 2> 4) Schrodinger equation. This is another of reasoniseto

also describes the state of the particle, wiigrandC, referred to it as linear quantum mechanics.

are two arbitrary constants. The linear super- tjpsi If the state vector of the system at titgés |y (t,))

principle of quantum state is determined by thedn
characteristics of the operators and this is why th
quantum theory is referred to as linear quantum o o
mechanics. However, it is noteworthy to point dwtt — operatory (t,t,), namelyy (t))) = U(tt,) [@(t,))
such a superposition is different from that of siaal 0 Og oo o 0
wave, it does not result in changes in probabdind  whereU(t,t,)=1, U"U =UU" =1 . If U(t,0) =U(t).
intensity of particle. o _ thus the equation of motion becomes

(5) Correspondence principle. If the classical hao oo
mechanical quantitiesA and B satisfy the Poisson —fau(t) =HU(t) 9)

brackets: f, B} = 0A/0qy) x (0B/op,) - (0A/0 i
& B} = 2. [(9n/0qy) x (9B/9py) - (9A/0py) when H does not depend explicitly on an tirheand

x (0B/0qn)], whereq, andp, are generalized coordinate o o . . )
and momentum in classical system, respectivelyn the L_J(t):(:]Xp(—'t H/n) . If H is an explicit function of
. timet, then

then the mechanical quantity and wave vector a¢ tim
are associated with those at titgdy a unitary motive

the corresponding operator8 and B in quantum : . T
mechanics satisfy the following commutation relasio u() =1+1'[dt1 H(t1)+(1)zjdg H(tl)J-dtz H(t,)+--- (10)
ihg i) 5 3
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This equation shows a causality relation of the occupations of electronic systems, atom, molecue,
microscopic law of motion. Obviously, there is an the band structure of solid state matter, and angng
important assumption here: the Hamiltonian operafor atomic configuration are completely determined he t
the system is independent on the wave functiortaiés above equations. Macroscopic behaviours of the
of the particle. This is a fundamental assumption i systems, such as, mechanical, electrical and dptica
guantum mechanics. properties may be also determined by these equation

(7) Principle of full-identity. No new physical $¢a  This theory can also describe the properties of
occurs when two same particles exchange mutuallymicroscopic particle systems in the presence arezat
their positions in the systems, in other wordsaiisfies  electromagnetic-field, optical and acoustic wavesd

o thermal radiation. Therefore, to a certain degibe,

Py |¢’> = ’W/’> » Where Py 1Sa exchange operator, . jinear Schrodinger equation describes the law aiono
The wave function for an system consisting of ideit ~ of microscopic particles of which all physical ssis
particles must be either symmeti#; , (A=+1) or 2£ieeﬁgg1posed. It is the foundation and pillar ofdera
antisymmetrié/., (1 =-1), and this property remains  The quantum mechanics had great successes in
invariant with time and is determined only by treture  descriptions of motion of microscopic particlescisas,
of the particle. The wave function of a boson m#etis  electron, phonon, photon, exciton, atom, molecule,
symmetric and that of fermion is antisymmetric. atomic nucleus and elementary particles, and in

(8) Assumption of measurement of physical predictions of properties of matter based on théiano
quantities in quantum systems. There was noof these quasi-particles. For example, energy spext
assumption made about measurement of physicaptoms (such as hydrogen atom, helium atom) and
quantities at the beginning of quantum mechanits. | molecules (such as hydrogen molecule) and compounds
was introduced later to make the quantum mechanicghe electric, magnetic and optical properties @it
complete. However, this is a nontrivial and and condensed matters can be calculated basedeon th
controversial topic which has been a focus of difien  quantum mechanics and the calculated results are in
debate. This problem will not be discussed here.good agreement with experimental measurements.
Interested reader can refer to some literatures. Being the foundation of modern science, the

In one word, these hypothesizes stipulate theestablishment of the theory of quantum mechaniss ha
representation forms of states and mechanical dgigsnt revolutionized not only physics, but also many othe
and Hamiltonian of microscopic particles and the science branches, such as, chemistry, astronomy,
relationships satisfied by them. Concretely speaking  biology, etc., and at the same time, created maw n
states of microscopic particle is represented byase  branches of science, for example, quantum stagjstic
function, which satisfies the linear Schrodingeuaipn  quantum field theory, quantum electronics, quantum
(7) and linear superposition principle in Eg. (4)da chemistry, quantum biology, quantum optics, etce On
normalization condition, the square of its absokgtie ~ Of the great successes of quantum mechanics is the
represents the probability of the particle at derpint  explanation of the fine energy-spectra of hydrogtem,
in space-time, and is used to indicate the corpuscl helium atom and hydrogen molecule. The energy
feature of microscopic particle. The mechanical spectra predicted by quantum mechanics for these
quantities of microscopic particle are represefgthe ~ simple atoms and molecules are completely in
operators, which satisfy the commutation relatioEg. ~ agreement  with experimental data. Furthermore,
(5) and uncertainty relation in Eq. (6), their veduare =~ modern experiments have demonstrated that thetsesul
demoted by some possible average values orf Lamb shift and superfine structure of hydrogeoma
eigenvalues of corresponding operators in anystate and anomalous magnetic moment of electron predicted
eigenstates, The Hamiltonian operator of the systsm by the theory of quantum electrodynamics are
independent on the wave function of state of thecoincident with experimental data. It is therefore
particles and denoted only by kinetic and potential believed that the quantum electrodynamics is one of
energy operators in Eq. (8), which determine tladest  successful theories in modern physics.
of the particles by virtue of Eqg. (7). These arst jihe Despite the great successes of quantum mechanics, i
quintessence and creams of quantum mechanics. nevertheless encountered some problems and

difficulties. In order to overcome these difficel

II. THE SUCCESS AND DIFFICULTIES OF Einstein had disputed with Bohr, and others for the

QUANTUM MECHANICS AND ITS ROOTS whole of his life and the difficulties remainedllstip to
. . now. The difficulties of quantum mechanics are well
On the basis of several fundamental hypothesise

mentioned above, Heisenberg, Schrodinger, Bohnsknown and have been reviewed by many scientists.

Dirac, etc., have founded up the theory of quantumWhen one of founders of the quantum mechanicscDira
’ N 1visited to Australia in 1975, he gave a speech on

mechanics which describes the law and properties o SR
development of quantum mechanics in New South

motion of the microscopic particles. This theorstss ) ) . . . )
that once the externally applied potential fieldsl ahe Wales University. During his talk, Dirac mentiornght

conditions at the initial states for the particte given, &t the time, great difficulties existed in the quam
the states and features of the particles at ang tater ~ mechanical theory. One of the difficulties refertecby
and any position can be easily determined by linearDirac was about an accurate _theory for interaction
Schrodinger equations (7) and (8) in the case ofbetween catone point, we shall find that the epefg
nonrelativistic motion. The quantum states andrthei point charge is infinite. This problem had puzzled
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physicists for more than 40 years. Even after the The second stage was from 1927 to 1930. After Bohr
establishment of renormalization theory, no actualhad set forward his complementary principle and had
progress had been made. Therefore, Dirac concloiged formed his orthodox interpretation, Einstein nursed
talk by marking the following statements: “It isdaise ~ €xtreme grievance. Because the complementary
of these difficulties, | believe that the foundatifor the ~ Principle was set forward based on the Heisenberg
quantum mechanics has not been correctly laid down. Uncertainty relation, thus, the spearhead of Ein'ste

cannot accept that the present foundation of thecriticri]smr\]/yc’:ljs directed at]Ehe uncertainty_lrelgtion._ died
quantum mechanics is completely correct”. The third stage was from 1930 until Einstein died.

However, have what difficulties in the quantum g\nhexpreSEi_orr]l ‘\‘/IanILDsRs”harpI%cor;]cedngated ort1 fthe m‘g%
mechanics on earth evoked these contentions asedrai 20" !N Whic paradox had been set forward by

doubts about the theory among physicists in thdd®or :Ehi_nstein (tjogether Wi]fh Pgdtolstlﬁ]y %nd. Rosetr:l. Bﬁcflt’se
It was generally accepted that the fundamentalthef IS paradox was reterred 1o the basic probiemne

quantum mechanics consist of Heisenberg matrix-QM: i-€., whether it satisfied the deterministic
localized theory and the microscopic causality ot. n

mechanics, = Schrodinger wave = mechanics, BOhrlSBecause some of recent experiments are advantageous
explanation of probability for the wave functiondan to the LOM, instead of the Bell inequality, so & i

Heisenberg uncertainty principle, etc.. These vedse

the focal goints of de}:ngte arr:d controversy. Ineoth necessary to understand the contents and meanthg of
word, the debate was about how to interpret the EPN parad_ox._

quantum mechanics. Some of the questions being Many scientists who followed closely the thought of
debated concern the interpretation of the wave- ocalization and incomplete view of the LQM which
corpuscle duality, probability explanation of wave WEre set forward by Einstein etc thought of thairén

function, Heisenberg uncertainty principle, Bohr could exist h'ddef‘ Va“?‘b'es theory hidden b_eh|lmre| {
complementary (corresponding) principle, the quantu -QM. which ~ might interpret the ~behaviour of

mechanics which describes on earth whether theofaw pro_babilit,}/ for the MIP. This thought of “the hidde
motion for a single particle or for an assembly variables” had early been suggested when the LQM wa

consisting of a great number of particles, the [enois jUSt born. However, Von Neumann Law had negated it
of microscopic causality and chance, the diffi@stin :n 193%' t';(.)r a Iglng tl?f(ta Sltucezthder\]lil ”I% Soe ta;ked
controlling interaction between measuring instrutmen onger 1o this problem. Aler the 2n or artest

and objects being measured, etc. Meanwhile, theElnsteln had expressed a grievance to the LQM and
quantum mechanics can not describe the physicaPuQQESted that any actual state would completely be

; ; - i+ described.

systems with many body and many particles. Whésn it s .
u)sled to depict S)l/JCh syystems, p}lle%ty approximations BohEn_put forward a systematic hidden var_|able
must be done to find out some approximate solutions 1€0TY" in 1952. He considered that the statistical
thus a lot of true and important phenomena anccesffe characteristics of the LQM come from th? f'“Ct“?‘t"'f_
are artificially eliminated or thrown away. Thisygry  SuPguantum systems. If the hidden function detemin
sorry for developments of physics. Therefore mdst o (€ MIP could be found, then a deterministic dexirn
these problems relate to an important problem tiat CO.UId be made for a single p.art|cle. How does’) the
quantum mechanics is or is not the theory of real€XiStence of such hidden variables be proved? He
physics. Since modern quantum mechanics was born ir?u_ggested experlment'al alternatlves for measuiieg 1
1920s, these problems were all situated in heatedPN correlation function of single proton and the
disputes among various points of views and differen polarizing corr,elatlon in ar)n|h|Iat|ng radiation of_
schools. It was an exceptional phenomenon in hisior photor,15. Bohm's the_ory was Im rovgd later bgcause :
physics, that so wide the scope was and so high th@ohm’s theory the single stagg r-t) is essentially a
related physicist's positions in different schoolere. ~ smooth variational state which describes only stdte
The main trend was Copenhagen School regarded Bohthe fluid with random fluctuation, but the wave étion
as its head. As early as 1920s, heated disputes off the LQM can not take into this random fluctuatio
statistical explanation and incompleteness of waveThus, new hidden variables would not be introduiced
function arose ever between Bohr and other physicis such a case. Then Bohm's theory can be only refeae
such as Einstein, de Brooglie, Schrodinger, Loregtiz ~ as a random hidden-variables theory.
Thus, a long-drawn-out dispute occurred. Such atgre ~ However, if the motion of particle in the systemswa
polemic is unprecedented. This polemic may be divid taken as a stable Markov process, then a steadtisol
into three stages. of Schrodinger equation can be given from steady

When the quantum mechanics had just been foundedlistribution of Markov chain, if the Fock-Planck
from 1924 to 1927 as the first stage, Einstein geded  equation was taken as dynamic equation of the MIP,
from his own philosophical conviction and his stitm ~ then the new “hidden variables theories” of the LQM
aim pursued (a description of exact causality tolwar can also be set up. In 1996, Bell set up Bell’s iradity
physical world) to nurse a strong grievance agdimst 0N the basis of Bohm deterministic “localized vblés
probability interpretation of the quantum mechanide ~ theory” and attempted to verify by experiment this
said in this letter: “although the quantum mechangc  theory and the LQM which was right and which was
imposing, there is an internal sound which tellstee ~ Wrong. As mentioned above, at that time, majority o

the quantum mechanics is not so real yet, in asg,da  the experiments supported the LQM. Thus the loedlliz
believe that God is not to throw dice”. “hidden variables theory” which could not complgtel
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repeat all the statistical predictions of the LQMsy  solutions of the equation [7-9]. However, for all

negated at present. externally applied potentials, the solutions of the
In one word, the long-dated dispute between Bohrequation are always a linear or dispersive wave, fo

and Einstein schools was focused on three problemsgyxample, at\/(F,t)IO, its solution is a plane wave

The first is that Einstein upheld to believe thhet

microscopic world being the same as the macroscopic Ft)=A'expl KT - cd 11

one in which the particles is a matter of objective i l//( ' ) Pl ) i (, )

existence independent of sensational and the theare Where k is the, ‘wave-vector of the wavey is its

description to it should be deterministic in priplei  frequency, and\’is its amplitude. This solution denotes

The second is that Einstein always consideredttteat  the state of a freely moving microscopic particienvan

theory of the LQM was not an ultimate and complete €igenenergy of

one. From the point of view of Einstein, the obijest pF_1

truth of the LQM is similar to the classical optidhey E—%—En“f"' B+ )< p, B g<e) (12)

all seem to be a kind of theory with statisticat/a.e., This is a continuous spectrum. It states that the

when the probabilityl (r,t)° of a particle at probability for the particle to appear at any pdmthe
momentt and in locationr is given, an average value space is the same, thus the microscopic particle
of observable quantities with which the experimenta propagates and distributes freely in a wave inltota
results may be compared can be calculated out byspace, this means it cannot be localized and have
statistics. But the process of individual partistate is  nothing about corpuscle feature.

locking in full understanding yet. Hencg (r,t)has If the free particle is artificially confined in small

not ended the understanding of microscopic object,finite space, such as, a rectangular box of dinoeri
namely the statistical interpretation can not bemate P andc, then the solutions of Eq. (7) are standing waves

and complete. The third is how to interpret phyl§ica — peid WX b VTY L TWTZ) Seyn (3
the LQM. He had a grievance against that the thebry z,l/(x,y, Z’l)_ Fei a St b st C e (13)
the LQM made an attempt at completely describing |, g,ch a case, there is still dispersion effecttfie
single particle. This had fully been expressed is h microscopic particle, namely, it appears still with

speech in 5th Selway International Meeting of PEBISI  yeterminant probability at each point in the boxhva
He put forward again that the states of a singhtigla quantized eigenenergy

could not be described by the wave functiénin any 2/ 2 o
case in his book of “Physics and reality” publistied E= Th n.mn.n (14)
1936, it is referred to many particles. In the tighterm 2mla& B ¢

in statistical mechanics, the system should bemdeto  The corresponding momentum is also quantized. This
as an assembly. He considered further that theneans that the wave feature of microscopic partie
uncertainty relation resulted from incompleteneste  peen not changed in this condition.

description for an particle byy(r,t). because a f the potential field is further varied, for exatap
description of completeness should be definite dibr  the microscopic particle is subject to a conseveati

observable quantities. Additionally, he did not @@t time-independent field) (7.t)=U (7)# 0, then the

the statistical interpretation for wave function e ioroscopic particle satisfies the time-independent
LQM, because he did not believe that the eIeCtronIinear Schrodinger equation

possessed free will. Thus, Einstein’s grievancensga 42

the LQM did not direct towards the mathematic forms LU Y, (f)w-z =k (15)
of the LQM, but its fundamental hypothesises arel th 2m

physical interpretation. He also considered th# ik where

due to the incomplete understanding of the propexi — 7\ o-iEt/A

the MIP. Moreover, since the contradiction of riefity Y=y (r)e (16)

theory to the theoretical fundamental of the LQMI ha _ES = . )
ever once resulted in a dispute. Thus Einstein éofia Wheg_\/ N F.H ,IheriF IS al coqstz;nt field, SUCE as,
thought to unite the relativity theory and LQM andnt & ©n€ dimensional uniform electric fieldy=-e>, the
to interpret the atomic structure by field theohy.a solution of Eq. (15) i3ﬂ'=A\/EH§12)[(2/3)-4‘3/2]-5:
word, the divergences about several fundamental /1+1 . where H® is the first kind Hankel
problems of the LQM between Einstein and Bohr X DA (_X) )
schools are deep-going, concrete and deep|yfunct|on,A is a normalized constaritjs the character-
considerable. Above introductions of the disputesistic length andA is a dimensionless quantity. The
between them are helpful to deeply understand estur solution is still a dispersed wave. Whén. oo , it
and question of the LQM and to promote further oy — A A 2923
bearing of non-linear quantum mechanics. approacheg/'(¢) = A‘(_ e to be f"‘ damped- wave.
However, what are the roots of these difficultids o If V(x) = FxX*, the eigenwave function and eigenen-
quantum mechanics on earth? As is known, the — N a%X2 —(n+
Schrodinger equation in Eg. (7), which is used to ergy arey/()=Ne I—L(a))', and g, =(n 1/?)hw,
describe the properties and rules of motion of (M = 0, 1, 2,..), respectively, heid (ax)is the
microscopic particles, is a wave equation, if ottg Hermite polynomial. The solution obviously has a

externally applied potential is known, we can fifé¢ ~ decaying feature, and so on. These properties of
solutions show clearly that the linear Schrodinger
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equation is only a wave equation, its solutionsehanty periodic potential or other approximate potentials,

a wave with dispersion feature, not the corpuseddure.  which replace the real interactions between them,
We can only use the|¢’(f—1)|2 to represent the without respect to how complexity of the interanto

among the particles or between the particles and

background fields. This means that real motions and

any interactions among them are all completely and

of the time and external potentisl However, these thoroughly ru_bbed an_d negl_ected, thus the natL_meIs a
features are incompatible and contradictory witjard ~ [€@tures of microscopic particle are only deterrdiby

to he traditional concept of particles [7-.9], thugreat  the kinetic energy term(hz/zm)[lz = ApZ/er, with
difficult and trouble of quantum mechanics, suchths dispersive effect, thus the particle has only the

uncertainty relationship between the position and di : : : :
: ” ispersive or wave feature. Then, microscopic pladi
momentum, the mechanical quantities have SOmghave permanently a wave or dispersive feature thet

average values in any state. These difficulties an le feat This is iust th t th N
contradictions are the intrinsic and inherent iamum corpuscie teature. IS IS Just the root the micopsc
particles have only a wave feature in quantum

mechanics, and cause a duration controversy inighys ; _ yave
[8-12]. More surprising, the way and method solving mechanics. Obviously, this is not reasonable and
these problems have not sought up to now. Therd@fore appropriate to practical case. The above problemds a
is very necessary to clarify the essences of thesdlifficulties are just the inherent shortcomingsliokar
problems and to find the roots generating thesequantum mechanics and cannot be overcome in itself
problems [8-12]. framework. Therefore, it is not difficult to conde

As is known, Hamiltonian operator in Eq. (8) of the from the above studies that the linear quantum
system corresponding Eq. (7) consists only of kinet mechanics is only an approximate theory and need
and potential operator of particles; the latteroidy develop forwards.
determined by an externally applied field, and not On the contrary, if the real motions of each péetar
related to the state or wave function of the pktieve background field and the interactions among the
can keep changing the form of the external potkntia particles or between the particle and backgrouedd fi
field v (r) , but soon we will find out that the dispersion are now considered, where the background field beay
and decaying nature of the microscopic particlesiges the lattice field in solid and condensed mattenwirich
no matter what form the potential field takes. This the microscopic particles are possibly the electoon

that th ¢ | potential fialdr | exciton or polaron, thus we can give the dynamical
means that the externa po-en 1a 1€ dr) C‘f’m or_1y equations of the particles and background fieldictvh
change the shape of the microscopic particle, it®., can be represented by

probability of particle occurred at positighand timet.
The above results show that the wave feature of th
microscopic particle cannot be changed with vaorei

amplitude and velocity, but not its fundamentalganay P 72 oF

such as dispersion as mentioned above. Therefoee, t ih—@=—-—0%+V (X, 1)+ yo— (17)

natures and features of microscopic particle arg on ot 2m 0X

determined by the kinetic energy term, 9%F 9%F 0 )

(h?/2m)0% = Ap2/2 m, with dispersive effect, which 2 ~Vg = _X—M (18)
’ ’ ot 0x 0X

cannot always be balanced and suppressed by a

e e Ovhereqo denotes the state of a microscopic partiEle,
external potential fielaV(r,t) in Eq. (7). Thus the

_ ) _ denotes the dynamics of a background field orfeerot
particle has only the dispersive or wave feature.

Because microscopic particles are always in motioa particle with velocity,, X'is a coupling interaction
dispersion effect of the kinetic energy term always coefficient between them. This coupling changes
exists. Then, microscopic particles have permapemtl themselves states. Eq. (17) and (18) mean that Wieen
wave or dispersive feature, not the corpuscle featu background field vibrates harmonically around its

This is just the root the microscopic particlesdawly ~ equilibrium position , instead of is frozen, thates of
a wave feature in quantum mechanics. the particles will be changed through the interacti

between them, such as electron-phonon couplingit$ut
Ill. SCHRODINGER EQUATION ONLY DESC- counteraction force also the background field tdkena

the forced vibration. This is just the physical miegs
RIBES APPROXIMATELY THE PROPERTIES of Eq. (17)-(18). From Eq. (18) we can find out

OF MOTION OF MICROSCOPIC PARTICLES oF X X
The above results show that the quantum mechanics 6_ == V- \2 M (29)
is so simple that it delineates and represents not ] _X 0
essential and complete motions and interactionallof Inserting Eq. (19) into Eq. (17) yields
particles, which constitute the microscopic systems .0 n? ) 2
Under the indication of this theory, when the quamt 'ha¢: _EnD ¢+V(X,t)‘b|§4 @ (20)
mechanics is used to study the properties of mation )
microscopic particles in th_e complicated systems Ofwhereb: X This equation is just the nonlinear
many bodies and many patrticles, such as atoms oy ma Va —Vj

electrons, molecule, solid and polymer, we have to ; : . . o
freeze the motions of nuclei, or other particles (o Schrodinger equation of the microscopic particlbich

electrons) or lattice field, and represent furtlleeir is different from linear Schrodinger equation (This
effects on the studied particle by using a meald fier result shows clearly the nonlinear interaction ceme
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from theinteractions among the particles or between the

particles and background field. In practice, allistic

physics systems are composed of many particles and

many bodies, the system composed of one particis do

almost exist not in nature. Then in these systems

including the hydrogen atom, the nonlinear intéoat
exist always and generally in any conditions, ifycthe
real motions of each particle or background fietdl a

whereA, =

dx :'%Sem{@( X %) - vﬂ} &8/ o)

mv?/2-E
2b

of the particle, E# ¢« . The solution of Eqg. (29) can be
also found by the inverse scattering method [1318}

, Vis the velocity of motion

the interactions among them are considered [10-15].This solution is completely different from Eq. (Z)nd
This means that we should all use the nonlinearcontains a envelop and carrier waves, the former is

Schrodinger equation in Eqg. (20), instead of timedr
Schrodinger equation in Eg. (7) in quantum mechgnic

P(x.t)= pbsem{pb[ﬁdx‘ %) —thé} and a bell-type

to study the states and properties of microscopicnon-topological soliton with an amplitude,Ahe latter

particles in any realistic-physics systems.
At present, it is deserve to study whether the
nonlinear interactiorb‘(p‘2 @ related to the state of the

particle can cancel and suppress the dispersiectesf
the kinetic term in Eqg. (20) and result at lasttie
localization of the particle. For this purpose we
investigate the changes of nature of the partities
using Eq. (20) av(x, t) = 0.

In the one-dimensional case, equation (20)(&tt) =
0 is represented by

|ﬂ + ¢x'x‘ + b‘ﬁzqo: O

where X'= X/A/h? /2m, t'=t/h . We now assume
the solution of Eq. (21) to be of the form

(21)

PX ) = P(X,1)e (22)

Inserting Eq. (22) into Eq. (21) we can obtain
¢x'x' - ¢Ht - ¢Hx2 - b¢2¢ = O! (b > O) (23)
$6,,.+20.6,+¢.=0 (24)

If let 8=6(xX-v.t'),¢=¢(xX-v.t'), then Eq.
(23)-(24) become

¢x'x‘ _Vc¢0t‘ - ¢6x2 - b¢3 =0 (25)

@96, +2¢.6,.-v.p.=0 (26)

If fixing the time t' and further integrating Eq26)
with respect to X’ we can get

¢2 (20x' _Ve) = A(tl) (27)
Now let integral constari (t') = 0, then we can get
6, =V, /2. Again substituting it into Eq. (25), and
further integrating this equation we then yield

J'!/i d¢
»\JQ(#)
where Q(¢) = -bg" 12+ (v - 2v,v, )¢ +C'.
When ¢ = 0, VZ-2V,V, >0, then ¢==+g¢,
@ =[(vZ -2v_v,)/2b]is the roots ofQ(¢) =0 except
forg = 0. Thus from Eq. (18) we obtain the solution of
Eq. (23)-(24) isp(x,t') = ¢, SedW[\E%(X"VJ')]' Then

the solution of nonlinear Schrodinger equation . E
(21) eventually is of the form

= X'-v t (28)

Nature Sciences
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is the exp{i[mv(x -x,) - Et]/h} . This solution is
shown in Fig. 1. Therefore, the microscopic pagticl
described by nonlinear Schrodinger equation (213 is
soliton [13-17]. The envelop(x, t) is a slow varying
function and the mass centre of the particle, thstipn
of the mass centre is justxa} A is its amplitude, and

its width is given byw = 27#:/(~'mbA,) . Thus, the size

of the particles isAW =27%1/+/mb and a constant.

This shows that the particle has exactly a massreen
and determinant size, thus is localizedx@gAccording

to the soliton theory [13-17], the bell-type safitm Eq.
(29) can move freely over macroscopic distancea in
uniform velocity v in space-time retaining its form,
energy, momentum and other quasi-particle propertie
Just so, the vectdr or x has definitively physical
significance, and denotes exactly the positionghef
microscopic particles at tinte Then, the wave-function

df,t)or o(x, t) can represent exactly the states of the

particle at the positior orx and timet. These features
are consistent with the concept of particles. Tthes
feature of corpuscle of microscopic particles
displayed clearly and outright.

At the same time, we show also the collision proper
of two soliton solutions of Eq. (21) by numerical
simulation technique in Fig. 1(c). From this figure
see clearly that the two particles can go througbhe
other while retaining their form after the colligio
which is the same with that of the classical pésic
Therefore, the microscopic particle depicted by the
nonlinear Schrodinger equation (21) has an obvious
corpuscle feature.

However, the envelope of the solution in Eq. (E9i
solitary wave. It has a certain wavevector anddesgy
as shown in Fig. 1(b), and can propagate in spaoe-t
which is accompanied with the carrier wave. The
feature of propagation depends only on the concrete
nature of the particle. Fig. 1(b) shows the widfthtte
frequency spectrum of the envelopg(x, t), the
frequency spectrum has a localized structure arded
carrier frequency wo,. Therefore, the microscopic
particle has exactly a wave-particulate duality-]H).

Fig. 1(a) and Eq. (29) are just a perfect and bidut
representation and embodiment of the wave-partieula
duality of the microscopic particles. This resulsca
consists of de Broglie’s relation formula of wave-
particulate duality as well as Davisson and Germer’

is
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Fig.1. The solution in Eq. (29) #t=A =0 in Eq. (11) and its features.
Nature Sciences

seam in 1927 [6-8].

Nature Sciences
experimental result of electron diffraction on dtub However, if Eq. (32)
However, we also demonstrate that the solutionepf E
(29) is not the solution Eq. (11) of linear Schraghr
equation in Eq. (7),

Schrodinger equation, its solution is of the form:
interaction approaches to zero. To see this cleargy

even though the nonlinear
now re-write the solution Eq. (29) as the followifogm

¢(xt)=2\fg2,ksed{ o[ §)- vt} W)

is treated as a

¢ (xt)= Al
We now havew = k?, which gives the phase velocity
w/k asy, =k and the group speegiy/ok =u,, =2k -
where 3%/b'= Ay A, = [VE = 2VVe | v, s the
2b
group velocity of the particley, is the phase speed of
the carrier wave. For a certain systevg,and v, are
determinant and do not change with time. According

Apparently, this is different fromy, =4k . This is
the soliton theory [13-17], the above solution witbak

because the solution Eq. (31) is essentially diffier
from Eq. (33). Therefore, the solution Eq. (32hdd the

solution of nonlinear Schrodinger equation (20)hwit
V(x, ) = 0 in the case of weak nonlinear interactions.
Solution Eqg. (31) is a “divergent solution¢(x,t) 5
nonlinear interaction (b<<l) and small skip(x',t')
may be approximated by’(> vit')

be approximated by

@ = 42 Toke Ko el vz g
Thanks to the small termm2 @, then Eqg. (21) can

at X — —o0), which is not an “ordinary plane wave”.

The concept of group speed does not apply to a
divergent wave. Thus, we can say that the soliton i
made from a divergent solution, which is abandoined

the linear waves. The divergence develops by the
i@ +¢, =0

nonlinear term to yield waves of finite amplitud&hen
the nonlinear term is very weak, the soliton willetge;
and suppression of divergence will result in ndtsol
These circumstances are clearly seen from theogolit
solution in Eq. (30) in the case of nonlinear
coefficiento #1. If the nonlinear term approaches zero
(82) (p_ 0), the solitary wave diverggg(x,t) — o). If
Substituting Eg. (31) into Eq. (32), we can examine \ye want to suppress the divergence, then we hasetto
that it satisfies Eq. (32), and can get= 4k, which is k=0. In such a case, we get Eq. (33) from Eg. (30)
the group speed of the particle. (Near the tofhefdeak,  This illustrates that the nonlinear Schrodinger aigun
we must take both the nonlinear and dispersion derm
into account because their contributions are ofstirae
order. The result is the group speed.). Here, wee ha
only checked the formula for the region whqf@(,t)
is small; that is, when a particle is approximabgdeq.
(31), it satisfies the approximate wave Eq. (32)hwi
U, =4k.

can reduce to the linear Schrodinger equation d an
only if the nonlinear interaction and the group egpef
the particle are zero. Therefore, we can conclinde t

the microscopic particles described by the nonlinea
Schrodinger equation in the weak nonlinear intéoact
limit is also not the same as that in linear Schrger

equation in quantum mechanics. Only if the nonlinea
interaction is zero, the nonlinear Schrodinger &qua
can reduce to the linear Schrodinger equation. hrewe
real physical systems or materials are made up of a

particles

great number of microscopic particles, and nonlinea
microscopic particles or

interactions always exist in the systems. The meali

the

interactions arise from the interactions among the
and environment.

The
appropriate theory for real systems. It should bedu
often and extensively,

nonlinear

between the microscopic
Schrodinger equation should be the correct and more
even

in weak nonlinear
interaction cases. However, the linear Schrodinger
equation in quantum mechanics is an approximaton t
the nonlinear Schrodinger equation and can be tsed
study motions of microscopic particles in systems i

which there exist only very weak and negligible
nonlinear interactions.

However, how could a microscopic particle be
localized in such a case? In order to shed light on
conditions for localization of microscopic partiétethe
nonlinear Schrodinger equation, we return to dis¢he
property of nonlinear Schrodinger equation (20)eTh
time-independent solution of Eqg. (20) is assumed to
have the form of [5-10]

@x) =g (xt)e™" (34)

Then Eq. (20) becomes as
36
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hz 2 41 " , 12 4
50 ¢+[V(r)—E]¢—b|¢| $'=0 (35)

For the purpose of showing clearly the properties o

this system, we here assume thA(r) and b are

independent off . Then in one-dimensional case,
equation (35) may be written as

g d.
%GXZ - Cw'VEﬁ(¢)

N1 a1 12
Ver (@)= BT -S(V-BleT @)
When V > E and V < E, the relationship between
V., (#") and@' is shown in Fig. 2. From this figure we

see that there are two minimum values of the piatkent
corresponding to two ground states of the micromcop
particle in the system, i.eg, = +./(V - E)/ b. This

is a double-well potential, and the energies of tihe
ground states are\WE)%4b< 0. This shows that the
microscopic particle can be localized due to thue flaat
the microscopic particle has negative binding energ
This localization is achieved through repeatedecibn
of the microscopic particle in the double-well putel
field. The two ground states limit the energy diffan,
thus the energy of the particle is gathered, soli®
formed, and the particle is eventually localized.
Obviously, this is s result of the nonlinear intei@an
because the particle is in normal, expanded stdteO.

In the latter, there is only one ground state of th
particle which igp' =0. Therefore, only ifo#0, the

system can have two ground states, and the migoasco
particle can be localized. Its binding energy, whic
makes the particle to be localized, is providedthsy
attractive nonlinear interaction;b(¢' ¢'*)? in the
systems. Only if the coupling interaction betwelant
equal to zero or exists not, then Eq. (20) can degee

(36)

corresponding quantum theory. These results show
clearly that quantum mechanics need very develop
towards the direction of nonlinear domain [22-25].

Vo LP, J

Ww’

Fig.2. The effective potential of nonlinear Schraghir equation.

IV. CONCLUSION

Since there are plenty of difficulties in quantum
mechanics, in which the states and properties of
microscopic particles are described by a linear
Schrodinger equation, thus we here used a nonlinear
Schrodinger equation to replace it and to studyh&r
the nature and states of microscopic particlesmRias
investigation we find that the states and propgrté
microscopic particles are considerably changedivela
to those in quantum mechanics. An outstanding and
obvious change is that the microscopic particleslea
evident wave-corpuscle duality which are obtaineanf
the natures and properties of the solutions of ineat
Schrodinger equation in the cases of different rewtie
potentials, the significances of wave function and
conservation laws met by it. The solution of the
nonlinear Schrodinger equation contains an envefap
carrier waves with determinant frequency which can
propagation in medium in a certain velocity. These
display the wave feature of particle. However the
solutions have also a mass centre and possesses
determinant size and mass, momentum and energy,

to the linear Schrodinger equation in Eqg. (7). This which satisfy also the conservation laws of mass,

indicates again that the linear Schrodinger equaitio

momentum and energy, at the same time, they meet th

quantum mechanics can only describe the states andollision law of classical particles. These embdHg

properties of a single particle in vacuum withohe t
nonlinear interaction. However, such physical syste
are not existent in nature. Therefore we concludenf
this investigation that the linear Schrodinger eumais

an approximate and linear theory and cannot cdyrect
describe the states and properties of the micrascop
particle in the realistic physics systems. In poewi
investigations plenty of scientific workers uséoitstudy
the states and properties of microscopic particighe
systems of many particles and many bodies androbtai
lot of approximate results, in which some compkcht
and really nonlinear interaction among these pagic

which could determine the essences and natures ofl€ microscopic particles.

particles, are ever replaced by a simple and umifor
average-potential unassociated with
particles in virtue of different approximate metkod
Thus the effects and

results arising from thesemicroscopic particles.

corpuscle feature of the microscopic particles.afyn

we seek the reasons and roots generating thesgesian
which are due to the nonlinear interactions amdrg t
particles or the particles and background fieldghia
systems described by the nonlinear Schrodinger
equation. In the meanwhile, we verified that theedr
Schrodinger equation can only describe the states a
properties of a single microscopic particle in vaou
without non linear interaction, the quantum mecbsani
is an approximate and linear theory and cannot
represent in truth the properties and states ofomatf

For a realistic physics
systems composed of many particles and many bodies

the states ofive should use the nonlinear Schrodinger equatidggin

(10) to describe the states and properties of the
The nonlinear interactions

complicated effects and nonlinear interactions areintroduced in the nonlinear Schrodinger equatiozakr

ignored completely. Then the state and properties othrough

particles determined by the average potential are n
real and correct. It is very necessary to re-sttiohse

the fundamental hypothesis for the
independence of Hamiltonian operator of the systems
with wave function of states of particles in quantu

problems by the nonlinear Schrodinger equation and

Nature Sciences
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mechanics. Thus these microscopic particles are10]
localized and have a real wave-corpuscle duality.
Therefore our investigations point out the diremctiof
development of quantum mechanics and raise ourtt]
knowledge and understanding to the essences and
natures of microscopic particles. [12]
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