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Abstract -- We used a nonlinear Schrodinger equation to replace the linear Schrodinger equation 
and to study further the natures and states of microscopic particles due to plenty of difficulties of 
quantum mechanics. From this investigation we find that the states and properties of microscopic 
particles are considerably changed relative to those in quantum mechanics. An outstanding and 
obvious change is that the microscopic particles have a wave-corpuscle duality in such a case. The 
solution of the nonlinear Schrodinger equation contains an envelop and carrier waves with 
determinant frequency which can propagation in medium in a certain velocity. These display the 
wave feature of particle. However the solutions have all a mass centre and possess a determinant size 
and mass, momentum and energy, which satisfy also the conservation laws of mass, momentum and 
energy, at the same time, they meet the collision law of classical particles. These embody the 
corpuscle feature of the microscopic particles. Finally we seek the reasons and roots generating these 
changes, which are due to the nonlinear interactions among the particles or between the particles 
and background field to be considered in the nonlinear Schrodinger equation. The nonlinear 
interactions provide a double-well potential to make the microscopic particle to be localized as a 
soliton, and break also through the fundamental hypothesis for the independence of Hamiltonian 
operator of the systems with wave function of states of particles in quantum mechanics. Therefore 
we conclude that the microscopic particle should be described by the nonlinear Schrodinger 
equation, instead of the linear Schrodinger equation, and the quantum mechanics should develop 
towards the direction of nonlinear domain. 

 
Index Terms -- Quantum mechanics, Microscopic particle, Schrodinger equation, Motion law, 

Wave, Corpuscles duality. 

I.  FUNDAMENTAL HYPOTHESISES OF 
QUANTUM MECHANICS 

As is known, the states and properties of motion of 
microscopic particles are depicted by quantum 
mechanics, which is a foundation of modern science 
and was established by several great scientists such as 
Bohr, Born, Schrodinger and Heisenberg, etc., in the 
early 1900s [1-6]. The theoretical hypothesises of 
quantum mechanics can be outlined as follows. 

(1) The states of microscopic particles are 
represented by a vector of states ψ  in Hilbert space, or 
a wave function ( ),r tψ �  in coordinate representation. It 

reflects the properties of wave of motion of the 
microscopic particles and can be normalized (i.e., 

ψψ =1). If β  is a constant number, then both 

ψ and β  ψ describe a same state. 
(2)  A mechanical quantity of microscopic particle, 

such as, coordinate x, momentum p and energy E, etc., 
is represented by an operator in Hibert space. An 
observable mechanical quantity corresponds to a 
Hermitean operator, its eigenvector of state constructs a 
basic vector in the Hibert space. This shows that the 

values of the physical quantity are just eigenvalues of 
these operators. The eigenvalues of Hermitean operator 
are a real number. The eigenvectors corresponding to 
different eigenvalues are orthogonal with each other. A 
common eigenstates of commutable Hermitean 
operators are constituted as an orthogonal and complete 
set { Lψ }. Any vector of state ( ),r tψ �  may be expanded 

by it into a series as follows 
( ) (∑=

L
LL trCtr ),, ψψ ,

 

)( ∑=
L

LLtr ψψψψ ,              (1) 

where ψψ LLC =  is the wave function in 
representation L. If the spectrum of L is continuous, 
then the summation in Eq. (1) should be replaced by an 

integral: ...dL∫ . Eq. (1) can be regarded as a projection 
of wave function ( ),r tψ � of the microscopic particle 

system, hence it is the foundation of transformation 
between different representations in quantum 
mechanics.  In the quantum state described by ( ),r tψ � , 

the probability getting the L’  in the measurement of L is 
222

L '''C ψψψ
LL

== in the case of discrete 
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spectrum, the probability is dL
L

2

' ψψ in the case of 

continuous spectrum. In a single measurement of any 
mechanical quantity, only one of the eigenvalues of 
corresponding operator can be obtained, the system is 
then said to be in the eigenstate belonging to this 
eigenvalue. 

The two hypothesises are most important 
assumptions and stipulate how the states of the 
microscopic particles are represented in quantum 
mechanics. 

(3)  A mechanical quantity in an arbitrary state ψ  
can only take an average value by 

ψψ

ψψ
^

^
Α

=Α  

ψψ
^^

Α=Α                           (2) 

at ( ),r tψ � is normalized, i.e., possible values of the 

physical quantity A may be obtained by calculating this 
average. In order to find out these possible values, a 
wave function of states must be firstly known. 
Condition for determination value the quantity A has in 

this state is 
2∆Α = 0. Thus we can obtain the 

eigenequation of the operator Â to be as follows 

Â Lψ =A’ Lψ                                 (3) 
From this equation we can determine the spectrum of 

eigenvalues A’ of the operator Â and its corresponding 

eigenfunction Lψ , the eigenvalues of Â are possible 
values observed from experiment for this physical 
quantity. All possible values of Â in any other states are 
nothing but its eigenvalues in its own eigenstates. This 
hypothesis reflects the statistical nature in the 
description of microscopic particle in quantum. 

(4)  Hilbert space is a linear one and the mechanical 
quantity corresponds to a linear operator. Then 
corresponding eigenvector of state, or wave function, 
satisfies the linear superposition principle, i.e., if two 

states 1ψ and 2ψ  are ones of a particle, then their 
linear superposition 

2211 ψψψ CC +=                   (4) 

also describes the state of the particle, where C1 and C2 

are two arbitrary constants. The linear super- position 
principle of quantum state is determined by the linear 
characteristics of the operators and this is why the 
quantum theory is referred to as linear quantum 
mechanics. However, it is noteworthy to point out that 
such a superposition is different from that of classical 
wave, it does not result in changes in probability and 
intensity of particle. 

(5) Correspondence principle. If the classical 
mechanical quantities A and B satisfy the Poisson 
brackets: {A, B} = 

n
∑∑∑∑ [(∂A/∂qn) ×××× (∂B/∂pn) - (∂A/∂pn) 

×××× (∂B/∂qn)], where qn and pn are generalized coordinate 
and momentum in classical system, respectively, then 

the corresponding operators Â and 
^

Β in quantum 
mechanics satisfy the following commutation relations 

[ ] ( ) },{, BAihBAABBA −=−=           (5) 

where i = 1− and h is the Planck’s constant. If A and B 
are substituted by qn and pn, respectively, then 

nmmn ihqp δ−=
∧∧

],[ , 0],[ =
∧∧

mn pp , This reflects the 

fact that the values taken for physical quantity are 
quantized. Based on this fundamental principle, the 
Heisenberg uncertainty relation can be obtained by 

4
)()(

2

22 C
BA ≥∆∆                        (6) 

where i C = ],[
∧∧
BA  and ∆Α = <Â-<Â>> . For the 

coordinate and momentum operators, the Heisenberg 
uncertainty relation takes the usual form: ⊿x⊿p > h/2. 

(6) The time dependence of a quantum state ψ  of a 
microscopic particle is determined by the following 
Schrodinger equation 

ψψ Η=
∂
∂−
ti

ℏ  

or ( )
2

2 ,
2

i V r t
t m

ψ ψ ψ∂ = − ∇ +
∂

ℏ �
ℏ          (7) 

where 2 2 / 2m∇ℏ  is the kinetic energy operator, V( r
→

, t) 
is the externally applied potential operator, m is the 
mass of particles, ( ),r tψ �  is a wave function describing 

the states of particles, r
�

 is the coordinate or position of 
the particle, and t is the time. This is a fundamental 
dynamic equation for the microscopic particle in time-
space. However the Hamiltonian operator of the 
systems H is given by 

2^ ^ ^ ^
2

2

h
H T V V

m
= + = ∇ +              (8) 

where 
∧
T is an operator of kinetic energy and 

^

V  an 
operator of potential energy. In other words, the 
properties of the systems at any time are determined by 
the Hamiltonian of the systems,  the states and features 
of the particle at any position and time is determined by 
Schrodinger equation (7), which is a linear equation for 
the wave function ( ),r tψ � , thus we call ever it as linear 

Schrodinger equation. This is another of reasons to be 
referred to it as linear quantum mechanics. 

If the state vector of the system at time t0 is )( 0tψ  

then the mechanical quantity and wave vector at time t 
are associated with those at time t0 by a unitary motive 

operator ),( 0ttU
∧

, namely )( 0tψ  = ),( 0ttU
∧

)( 0tψ , 

where ),( 0ttU
∧

=1, IUUUU ==
∧

+
∧∧∧

+ . If )0,(tU
∧

)(tU
∧

= , 

thus the equation of motion becomes 

)()( tUHtU
ti

∧∧∧
=

∂
∂− ℏ                       (9) 

when H does not depend explicitly on an time t  and 

)/exp()( ℏ
∧∧

−= HittU . If H is an explicit function of 
time t, then 
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This equation shows a causality relation of the 
microscopic law of motion. Obviously, there is an 
important assumption here: the Hamiltonian operator of 
the system is independent on the wave function of state 
of the particle. This is a fundamental assumption in 
quantum mechanics. 

(7) Principle of full-identity. No new physical state 
occurs when two same particles exchange mutually 
their positions in the systems, in other words, it satisfies 

ψkjp  ψλ= , where 
kjp

∧
 is a exchange operator, . 

The wave function for an system consisting of identical 

particles must be either symmetric sψ , )1( +=λ  or 

antisymmetric aψ , )1( −=λ , and this property remains 
invariant with time and is determined only by the nature 
of the particle. The wave function of a boson particle is 
symmetric and that of fermion is antisymmetric. 

(8) Assumption of measurement of physical 
quantities in quantum systems. There was no 
assumption made about measurement of physical 
quantities at the beginning of quantum mechanics. It 
was introduced later to make the quantum mechanics 
complete. However, this is a nontrivial and 
controversial topic which has been a focus of scientific 
debate. This problem will not be discussed here. 
Interested reader can refer to some literatures. 

In one word, these hypothesizes stipulate the 
representation forms of states and mechanical quantities 
and Hamiltonian of microscopic particles and the 
relationships satisfied by them. Concretely speaking, the 
states of microscopic particle is represented by a wave 
function, which satisfies the linear Schrodinger equation 
(7) and linear superposition principle in Eq. (4) and 
normalization condition, the square of its absolute value 
represents the probability of the particle at certain point 
in space-time, and is used to indicate the corpuscle 
feature of microscopic particle. The mechanical 
quantities of microscopic particle are represented by the 
operators, which satisfy the commutation relation in Eq. 
(5) and uncertainty relation in Eq. (6), their values are 
demoted by some possible average values or 
eigenvalues of corresponding operators in any states or 
eigenstates, The Hamiltonian operator of the systems is 
independent on the wave function of state of the 
particles and denoted only by kinetic and potential 
energy operators in Eq. (8), which determine the states 
of the particles by virtue of Eq. (7). These are just the 
quintessence and creams of quantum mechanics. 

II.  THE SUCCESS AND DIFFICULTIES OF 
QUANTUM MECHANICS AND ITS ROOTS 

On the basis of several fundamental hypothesises 
mentioned above, Heisenberg, Schrodinger, Bohn, 
Dirac, etc., have founded up the theory of quantum 
mechanics which describes the law and properties of 
motion of the microscopic particles. This theory states 
that once the externally applied potential fields and the 
conditions at the initial states for the particle are given, 
the states and features of the particles at any time later 
and any position can be easily determined by linear 
Schrodinger equations (7) and (8) in the case of 
nonrelativistic motion. The quantum states and their 

occupations of electronic systems, atom, molecule, and 
the band structure of solid state matter, and any given 
atomic configuration are completely determined by the 
above equations. Macroscopic behaviours of the 
systems, such as, mechanical, electrical and optical 
properties may be also determined by these equations. 
This theory can also describe the properties of 
microscopic particle systems in the presence of external 
electromagnetic-field, optical and acoustic waves, and 
thermal radiation. Therefore, to a certain degree, the 
linear Schrodinger equation describes the law of motion 
of microscopic particles of which all physical systems 
are composed. It is the foundation and pillar of modern 
science. 

The quantum mechanics had great successes in 
descriptions of motion of microscopic particles, such as, 
electron, phonon, photon, exciton, atom, molecule, 
atomic nucleus and elementary particles, and in 
predictions of properties of matter based on the motion 
of these quasi-particles. For example, energy spectra of 
atoms (such as hydrogen atom, helium atom) and 
molecules (such as hydrogen molecule) and compounds, 
the electric, magnetic and optical properties of atoms 
and condensed matters can be calculated based on the 
quantum mechanics and the calculated results are in 
good agreement with experimental measurements. 
Being the foundation of modern science, the 
establishment of the theory of quantum mechanics has 
revolutionized not only physics, but also many other 
science branches, such as, chemistry, astronomy, 
biology, etc., and at the same time, created many new 
branches of science, for example, quantum statistics, 
quantum field theory, quantum electronics, quantum 
chemistry, quantum biology, quantum optics, etc. One 
of the great successes of quantum mechanics is the 
explanation of the fine energy-spectra of hydrogen atom, 
helium atom and hydrogen molecule. The energy 
spectra predicted by quantum mechanics for these 
simple atoms and molecules are completely in 
agreement with experimental data. Furthermore, 
modern experiments have demonstrated that the results 
of Lamb shift and superfine structure of hydrogen atom 
and anomalous magnetic moment of electron predicted 
by the theory of quantum electrodynamics are 
coincident with experimental data. It is therefore 
believed that the quantum electrodynamics is one of 
successful theories in modern physics. 

Despite the great successes of quantum mechanics, it 
nevertheless encountered some problems and 
difficulties. In order to overcome these difficulties, 
Einstein had disputed with Bohr, and others for the 
whole of his life and the difficulties remained still up to 
now. The difficulties of quantum mechanics are well 
known and have been reviewed by many scientists. 
When one of founders of the quantum mechanics, Dirac, 
visited to Australia in 1975, he gave a speech on 
development of quantum mechanics in New South 
Wales University. During his talk, Dirac mentioned that 
at the time, great difficulties existed in the quantum 
mechanical theory. One of the difficulties referred to by 
Dirac was about an accurate theory for interaction 
between cat one point, we shall find that the energy of a 
point charge is infinite. This problem had puzzled 



________________________________ Nature Sciences ________________________________ 

Nature Sciences                                                          32                                   Vol. 3, No. 1, December 2008 
 

physicists for more than 40 years. Even after the 
establishment of renormalization theory, no actual 
progress had been made. Therefore, Dirac concluded his 
talk by marking the following statements: “It is because 
of these difficulties, I believe that the foundation for the 
quantum mechanics has not been correctly laid down. I 
cannot accept that the present foundation of the 
quantum mechanics is completely correct”. 

However, have what difficulties in the quantum 
mechanics on earth evoked these contentions and raised 
doubts about the theory among physicists in the world? 
It was generally accepted that the fundamentals of the 
quantum mechanics consist of Heisenberg matrix 
mechanics, Schrodinger wave mechanics, Bohr's 
explanation of probability for the wave function and 
Heisenberg uncertainty principle, etc.. These were also 
the focal points of debate and controversy.  In other 
word, the debate was about how to interpret the 
quantum mechanics. Some of the questions being 
debated concern the interpretation of the wave-
corpuscle duality, probability explanation of wave 
function, Heisenberg uncertainty principle, Bohr 
complementary (corresponding) principle, the quantum 
mechanics which describes on earth whether the law of 
motion for a single particle or for an assembly 
consisting of a great number of particles, the problems 
of microscopic causality and chance, the difficulties in 
controlling interaction between measuring instrument 
and objects being measured, etc. Meanwhile, the 
quantum mechanics can not describe the physical 
systems with many body and many particles. When it is 
used to depict such systems, plenty approximations 
must be done to find out some approximate solutions, 
thus a lot of true and important phenomena and effects 
are artificially eliminated or thrown away. This is very 
sorry for developments of physics. Therefore most of 
these problems relate to an important problem that the 
quantum mechanics is or is not the theory of real 
physics. Since modern quantum mechanics was born in 
1920s, these problems were all situated in heated 
disputes among various points of views and different 
schools. It was an exceptional phenomenon in history of 
physics, that so wide the scope was and so high the 
related physicist's positions in different schools were. 
The main trend was Copenhagen School regarded Bohr 
as its head. As early as 1920s, heated disputes on 
statistical explanation and incompleteness of wave 
function arose ever between Bohr and other physicists, 
such as Einstein, de Brooglie, Schrodinger, Lorentz, etc. 
Thus, a long-drawn-out dispute occurred. Such a great 
polemic is unprecedented. This polemic may be divided 
into three stages. 

When the quantum mechanics had just been founded 
from 1924 to 1927 as the first stage, Einstein proceeded 
from his own philosophical conviction and his scientific 
aim pursued (a description of exact causality towards 
physical world) to nurse a strong grievance against the 
probability interpretation of the quantum mechanics. He 
said in this letter: “although the quantum mechanics is 
imposing, there is an internal sound which tells me that 
the quantum mechanics is not so real yet, in any case, I 
believe that God is not to throw dice”. 

The second stage was from 1927 to 1930. After Bohr 
had set forward his complementary principle and had 
formed his orthodox interpretation, Einstein nursed an 
extreme grievance. Because the complementary 
principle was set forward based on the Heisenberg 
uncertainty relation, thus, the spearhead of Einstein's 
criticism was directed at the uncertainty relation. 

The third stage was from 1930 until Einstein died. 
An expression was sharply concentrated on the reply to 
Bohr, in which “EPR” paradox had been set forward by 
Einstein together with Podolsky and Rosen. Because 
this paradox was referred to the basic problem of the 
LQM, i.e., whether it satisfied the deterministic 
localized theory and the microscopic causality or not. 
Because some of recent experiments are advantageous 
to the LQM, instead of the Bell inequality, so it is 
necessary to understand the contents and meaning of the 
EPN paradox. 

Many scientists who followed closely the thought of 
localization and incomplete view of the LQM which 
were set forward by Einstein etc thought of that there 
could exist hidden variables theory hidden behind the 
LQM, which might interpret the behaviour of 
probability for the MIP. This thought of “the hidden 
variables” had early been suggested when the LQM was 
just born. However, Von Neumann Law had negated it 
in 1932. For a long time since then, no one talked 
longer to this problem. After the 2nd World War, after 
Einstein had expressed a grievance to the LQM and 
suggested that any actual state would completely be 
described. 

Bohm put forward a systematic “hidden variable 
theory” in 1952. He considered that the statistical 
characteristics of the LQM come from the fluctuation of 
subquantum systems. If the hidden function determining 
the MIP could be found, then a deterministic description 
could be made for a single particle. How does the 
existence of such hidden variables be proved? He 
suggested experimental alternatives for measuring the 
spin correlation function of single proton and the 
polarizing correlation in annihilating radiation of 
photons. Bohm’s theory was improved later because in 
Bohm’s theory the single state ( )tr ,�ψ  is essentially a 
smooth variational state which describes only state of 
the fluid with random fluctuation, but the wave function 
in the LQM can not take into this random fluctuation. 
Thus, new hidden variables would not be introduced in 
such a case. Then Bohm’s theory can be only referred to 
as a random hidden-variables theory. 

However, if the motion of particle in the system was 
taken as a stable Markov process, then a steady solution 
of Schrodinger equation can be given from steady 
distribution of Markov chain, if the Fock-Planck 
equation was taken as dynamic equation of the MIP, 
then the new “hidden variables theories” of the LQM 
can also be set up. In 1996, Bell set up Bell’s inequality 
on the basis of Bohm deterministic “localized variables 
theory” and attempted to verify by experiment this 
theory and the LQM which was right and which was 
wrong. As mentioned above, at that time, majority of 
the experiments supported the LQM. Thus the localized 
“hidden variables theory” which could not completely 
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repeat all the statistical predictions of the LQM was 
negated at present. 

In one word, the long-dated dispute between Bohr 
and Einstein schools was focused on three problems: 
The first is that Einstein upheld to believe that the 
microscopic world being the same as the macroscopic 
one in which the particles is a matter of objective 
existence independent of sensational and the theoretical 
description to it should be deterministic in principle. 
The second is that Einstein always considered that the 
theory of the LQM was not an ultimate and complete 
one. From the point of view of Einstein, the objective 
truth of the LQM is similar to the classical optics. They 
all seem to be a kind of theory with statistical law, i.e., 

when the probability ( ) 2
, tr
�ψ  of a particle at 

moment t  and in location r  is given, an average value 
of observable quantities with which the experimental 
results may be compared can be calculated out by 
statistics. But the process of individual particle state is 
locking in full understanding yet. Hence, ( )tr ,�ψ has 
not ended the understanding of microscopic object, 
namely the statistical interpretation can not be ultimate 
and complete. The third is how to interpret physically 
the LQM. He had a grievance against that the theory of 
the LQM made an attempt at completely describing 
single particle. This had fully been expressed in his 
speech in 5th Selway International Meeting of Physics. 
He put forward again that the states of a single particle 
could not be described by the wave function Ψ  in any 
case in his book of “Physics and reality” published in 
1936, it is referred to many particles. In the light of term 
in statistical mechanics, the system should be referred to 
as an assembly. He considered further that the 
uncertainty relation resulted from incompleteness of the 
description for an particle by ( )tr ,�ψ , because a 
description of completeness should be definite for all 
observable quantities. Additionally, he did not accept 
the statistical interpretation for wave function in the 
LQM, because he did not believe that the electron 
possessed free will. Thus, Einstein’s grievance against 
the LQM did not direct towards the mathematic forms 
of the LQM, but its fundamental hypothesises and the 
physical interpretation. He also considered that this is 
due to the incomplete understanding of the properties of 
the MIP. Moreover, since the contradiction of relativity 
theory to the theoretical fundamental of the LQM had 
ever once resulted in a dispute. Thus Einstein formed a 
thought to unite the relativity theory and LQM and want 
to interpret the atomic structure by field theory. In a 
word, the divergences about several fundamental 
problems of the LQM between Einstein and Bohr 
schools are deep-going, concrete and deeply 
considerable. Above introductions of the disputes 
between them are helpful to deeply understand natures 
and question of the LQM and to promote further 
bearing of non-linear quantum mechanics. 

However, what are the roots of these difficulties of 
quantum mechanics on earth? As is known, the 
Schrodinger equation in Eq. (7), which is used to 
describe the properties and rules of motion of 
microscopic particles, is a wave equation, if only the 
externally applied potential is known, we can find the 

solutions of the equation [7-9]. However, for all 
externally applied potentials, the solutions of the 
equation are always a linear or dispersive wave, for 
example, at ( ),V r t

�
=0, its solution is a plane wave  

( ), 'exp[ ( )]r t A i k r tψ ω
→ →

= ⋅ −�
             (11) 

where k is the wave-vector of the wave, ω is its 
frequency, and A’ is its amplitude. This solution denotes 
the state of a freely moving microscopic particle with an 
eigenenergy of 

  
2

2 2 21
( ),( , , )

2 2 x y z x y y

p
E p p p p p p

m m
= = + + −∞< <∞     (12) 

This is a continuous spectrum. It states that the 
probability for the particle to appear at any point in the 
space is the same, thus the microscopic particle 
propagates and distributes freely in a wave in total 
space, this means it cannot be localized and have 
nothing about corpuscle feature. 

If the free particle is artificially confined in a small 
finite space, such as, a rectangular box of dimension a, 
b and c, then the solutions of Eq. (7) are standing waves 

( ) 31 2, , , sin sin sin iEtn zn x n y
x y z t A e

a b c

ππ πψ −    =      
     

ℏ (13) 

In such a case, there is still dispersion effect for the 
microscopic particle, namely, it appears still with a 
determinant probability at each point in the box with a 
quantized eigenenergy 

22 22 2
31 2

2 2 22

nn n
E

m a b c

π  
= + + 

 

ℏ                (14) 

The corresponding momentum is also quantized. This 
means that the wave feature of microscopic particle has 
been not changed in this condition. 

If the potential field is further varied, for example, 
the microscopic particle is subject to a conservative 
time-independent field, ( ) ( ), 0U r t U r= ≠

� �

, then the 
microscopic particle satisfies the time-independent 
linear Schrodinger equation 

( )
2

2 ' ' '
2

V r E
m

ψ ψ ψ− ∇ + =
�ℏ              (15) 

where 

( )' iEtr eψ ψ −= ℏ
�

                   (16) 

When V F r= ⋅
�� �

, hereF
��

 is a constant field, such as, 
a one dimensional uniform electric field ( )V x e xε=− , the 

solution of Eq. (15) is ( )(1) 3 2
1 2' [ 2 / 3 ]ψ ξ ξA H i= ,ξ =  

/ λx l + , where (1)( )H x  is the first kind Hankel 
function, A is a normalized constant, l is the character- 
istic length and λ  is a dimensionless quantity. The 
solution is still a dispersed wave. Whenξ → ∞ , it 

approaches 
3 2' 1 4 2 3'( ) A e ξψ ξ ξ − −=  to be a damped wave. 

If 2( )V x Fx= , the eigenwave function and eigenen- 

ergy are 
2 2 2'( ) ( ),a x

n nx N e H xψ α−= and ( 1/ 2) ,ωnE n ℏ= +  

(n = 0, 1, 2,…), respectively, here ( )nH xα is the 
Hermite polynomial. The solution obviously has a 
decaying feature, and so on. These properties of 
solutions show clearly that the linear Schrodinger 
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equation is only a wave equation, its solutions have only 
a wave with dispersion feature, not the corpuscle feature. 
We can only use the 2

( , )r tψ
��

to represent the 

probability of particle occurred at position r
�

and time t. 
The above results show that the wave feature of the 
microscopic particle cannot be changed with variations 
of the time and external potential V. However, these 
features are incompatible and contradictory with regard 
to he traditional concept of particles [7-9], thus a great 
difficult and trouble of quantum mechanics, such as, the 
uncertainty relationship between the position and 
momentum, the mechanical quantities have some 
average values in any state. These difficulties and 
contradictions are the intrinsic and inherent in quantum 
mechanics, and cause a duration controversy in physics 
[8-12]. More surprising, the way and method solving 
these problems have not sought up to now. Therefore it 
is very necessary to clarify the essences of these 
problems and to find the roots generating these 
problems [8-12]. 

As is known, Hamiltonian operator in Eq. (8) of the 
system corresponding Eq. (7) consists only of kinetic 
and potential operator of particles; the latter is only 
determined by an externally applied field, and not 
related to the state or wave function of the particle. We 
can keep changing the form of the external potential 
field ( )V r

�
, but soon we will find out that the dispersion 

and decaying nature of the microscopic particle persists 
no matter what form the potential field takes. This 
means that the external potential field ( )V r

�
can only 

change the shape of the microscopic particle, i.e., its 
amplitude and velocity, but not its fundamental property 
such as dispersion as mentioned above. Therefore, the 
natures and features of microscopic particle are only 
determined by the kinetic energy term, 

�
2

2 2( 2 ) 2h m p m∇ = , with dispersive effect, which 
cannot always be balanced and suppressed by an 

external potential field ( , )V r t
�

in Eq. (7). Thus the 
particle has only the dispersive or wave feature. 
Because microscopic particles are always in motion, the 
dispersion effect of the kinetic energy term always 
exists. Then, microscopic particles have permanently a 
wave or dispersive feature, not the corpuscle feature. 
This is just the root the microscopic particles have only 
a wave feature in quantum mechanics. 

III.  SCHRODINGER EQUATION ONLY DESC- 
RIBES APPROXIMATELY THE PROPERTIES 
OF MOTION OF MICROSCOPIC PARTICLES 

The above results show that the quantum mechanics 
is so simple that it delineates and represents not 
essential and complete motions and interactions of all 
particles, which constitute the microscopic systems. 
Under the indication of this theory, when the quantum 
mechanics is used to study the properties of motion of 
microscopic particles in the complicated systems of 
many bodies and many particles, such as atoms of many 
electrons, molecule, solid and polymer, we have to 
freeze the motions of nuclei, or other particles (or 
electrons) or lattice field, and represent further their 
effects on the studied particle by using a mean field, or 

periodic potential or other approximate potentials, 
which replace the real interactions between them, 
without respect to how complexity of the interactions 
among the particles or between the particles and 
background fields. This means that real motions and 
many interactions among them are all completely and 
thoroughly rubbed and neglected, thus the natures and 
features of microscopic particle are only determined by 

the kinetic energy term, �
2

2 2( 2 ) 2h m p m∇ = , with 
dispersive effect, thus the particle has only the 
dispersive or wave feature. Then, microscopic particles 
have permanently a wave or dispersive feature, not the 
corpuscle feature. This is just the root the microscopic 
particles have only a wave feature in quantum 
mechanics. Obviously, this is not reasonable and 
appropriate to practical case. The above problems and 
difficulties are just the inherent shortcomings of linear 
quantum mechanics and cannot be overcome in itself 
framework. Therefore, it is not difficult to conclude 
from the above studies that the linear quantum 
mechanics is only an approximate theory and need 
develop forwards. 

On the contrary, if the real motions of each particle or 
background field and the interactions among the 
particles or between the particle and background field 
are now considered, where the background field may be 
the lattice field in solid and condensed matter, in which 
the microscopic particles are possibly the electron or 
exciton or polaron, thus we can give the dynamical 
equations of the particles and background field, which 
can be represented by 

2
2 ( , )

2

F
i V x t

t m x
φ φ χφ∂ ∂= − ∇ + +

∂ ∂
ℏ

ℏ     (17) 

2 2
22

02 2

F F
v

t x x
χ φ∂ ∂ ∂− = −

∂ ∂ ∂            (18) 

where φ  denotes the state of a microscopic particle, F 
denotes  the dynamics of a background field or another 

particle with velocity 0v , χ is a coupling interaction 

coefficient between them. This coupling changes 
themselves states. Eq. (17) and (18) mean that when the 
background field vibrates harmonically around its 
equilibrium position , instead of is frozen, the states of 
the particles will be changed through the interaction 
between them, such as electron-phonon coupling, but its 
counteraction force also the background field to make 
the forced vibration. This is just the physical meanings 
of Eq. (17)-(18). From Eq. (18) we can find out  

2

2 2
0

F

x v v

χ φ∂ = −
∂ −                 (19) 

Inserting Eq. (19) into Eq. (17) yields 
2

22 ( , )
2

i V x t b
t m
φ φ φ φ∂ = − ∇ + −

∂
ℏ

ℏ         (20) 

where 
2

2 2
0

b
v v

χ=
−

. This equation is just the nonlinear 

Schrodinger equation of the microscopic particle, which 
is different from linear Schrodinger equation (7). This 
result shows clearly the nonlinear interaction comes 
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from the interactions among the particles or between the 
particles and background field. In practice, all realistic 
physics systems are composed of many particles and 
many bodies, the system composed of one particle does 
almost exist not in nature. Then in these systems, 
including the hydrogen atom, the nonlinear interactions 
exist always and generally in any conditions, if only the 
real motions of each particle or background field and 
the interactions among them are considered [10-15]. 
This means that we should all use the nonlinear 
Schrodinger equation in Eq. (20), instead of the linear 
Schrodinger equation in Eq. (7) in quantum mechanics, 
to study the states and properties of microscopic 
particles in any realistic-physics systems. 

At present, it is deserve to study whether the 
nonlinear interaction φφ 2

b  related to the state of the 

particle can cancel and suppress the dispersion effect of 
the kinetic term in Eq. (20) and result at last in the 
localization of the particle. For this purpose we 
investigate the changes of nature of the particles by 
using Eq. (20) at V(x, t) = 0.  

In the one-dimensional case, equation (20) at V(x, t) = 
0 is represented by 

0
2

''' =++ φφφφ bi xxt                   (21) 

where mxx 2//' 2
ℏ= , ℏ/' tt = . We now assume 

the solution of Eq. (21) to be of the form 
)','()','()','( txietxtx θϕφ =               (22) 

Inserting Eq. (22) into Eq. (21) we can obtain 
)0(,022

'''' >=−−− bbxtxx ϕϕϕθϕθϕ     (23) 

02 ''''' =++ txxxx ϕθϕϕθ                (24) 

If let ),''(),''( tvxtvx ec −=−= ϕϕθθ  then Eq. 

(23)-(24) become 

032
'''' =−−− ϕϕθϕθϕ bv xtcxx         (25) 

02 ''''' =−+ texxxx v ϕθϕϕθ             (26) 

If fixing the time t’ and further integrating Eq. (26) 
with respect to x’ we can get 

)'()2( '
2 tAvex =−θϕ                  (27) 

Now let integral constant A (t’) = 0, then we can get 
2/' ex v=θ . Again substituting it into Eq. (25), and 

further integrating this equation we then yield 

''
)(0

tvx
Q

d
e−=∫

φ

φ φ
φ

                   (28) 

where ')2(2/)( 224 cvvvbQ ece +−+−= φφφ . 

When c’ = 0, ,022 >− ece vvv  then ,0φφ ±=  

]2/)2[( 2
0 bvvv ece −=φ is the roots of 0)( =φQ  except 

for 0=φ . Thus from Eq. (18) we obtain the solution of 

Eq. (23)-(24) is )]''(
2

[sec)','( 00 tvx
b

htx e−= ϕϕϕ . Then 

the solution of nonlinear Schrodinger equation in Eq. 
(21) eventually is of the form 

( ) ( ) ( )0[ ]0
0 0, sec

i mv x x EtA bm
x t A h x x vt eφ − −  = − −   

  

ℏ

ℏ
(29) 

where
b

Emv
A

2

2/2

0

−
= , v is the velocity of motion 

of the particle, E= ωℏ . The solution of Eq. (29) can be 
also found by the inverse scattering method [13, 14, 16]. 
This solution is completely different from Eq. (2), and 
contains a envelop and carrier waves, the former is  

( ) ( )[ ]






 −−=

ℏ

vtxxmbAhAtx 00
0 sec,ϕ and a bell-type 

non-topological soliton with an amplitude A0, the latter 
is the { }ℏ/])([exp 0 Etxxmvi −− . This solution is 

shown in Fig. 1. Therefore, the microscopic particle 
described by nonlinear Schrodinger equation (21) is a 
soliton [13-17]. The envelop φ(x, t) is a slow varying 
function and the mass centre of the particle, the position 
of the mass centre is just at x0, A0 is its amplitude, and 
its width is given by )/(2 0AmbW ℏπ= . Thus, the size 

of the particles is mbWA /20 ℏπ=  and a constant. 

This shows that the particle has exactly a mass centre 
and determinant size, thus is localized at x0 According 
to the soliton theory [13-17], the bell-type soliton in Eq. 
(29) can move freely over macroscopic distances in a 
uniform velocity v in space-time retaining its form, 
energy, momentum and other quasi-particle properties. 
Just so, the vectorr

�
or x has definitively physical 

significance, and denotes exactly the positions of the 
microscopic particles at time t. Then, the wave-function 

( )tr ,
�φ or φ(x, t) can represent exactly the states of the 

particle at the position r
�

 or x and time t. These features 
are consistent with the concept of particles. Thus the 
feature of corpuscle of microscopic particles is 
displayed clearly and outright. 

At the same time, we show also the collision property 
of two soliton solutions of Eq. (21) by numerical 
simulation technique in Fig. 1(c). From this figure we 
see clearly that the two particles can go through each 
other while retaining their form after the collision, 
which is the same with that of the classical particles. 
Therefore, the microscopic particle depicted by the 
nonlinear Schrodinger equation (21) has an obvious 
corpuscle feature. 

However, the envelope of the solution in Eq. (19) is a 
solitary wave. It has a certain wavevector and frequency 
as shown in Fig. 1(b), and can propagate in space-time, 
which is accompanied with the carrier wave. The 
feature of propagation depends only on the concrete 
nature of the particle. Fig. 1(b) shows the width of the 
frequency spectrum of the envelope φ(x, t), the 
frequency spectrum has a localized structure around the 
carrier frequency ω0. Therefore, the microscopic 
particle has exactly a wave-particulate duality [10-15]. 
Fig. 1(a) and Eq. (29) are just a perfect and beautiful 
representation and embodiment of the wave-particulate 
duality of the microscopic particles. This result also 
consists of de Broglie’s relation formula of wave-
particulate duality as well as Davisson and Germer’s 
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experimental result of electron diffraction on double 
seam in 1927 [6-8]. 

However, we also demonstrate that the solution of Eq. 
(29) is not the solution Eq. (11) of linear Schrodinger 
equation in Eq. (7), even though the nonlinear 
interaction approaches to zero. To see this clearly, we 
now re-write the solution Eq. (29) as the following form 

( ) ( ){ } ( )'
0[ ' ']' 2

0

2
, 2 sec 2 ' ' e civ x x v t

ex t k h k x x v t e
b

φ − −
 = − −  (30) 

where 23/2k/b1/2= A0, 
b

vvv
A ece

2

22

0

−
= , ve is the 

group velocity of the particle, vc is the phase speed of 
the carrier wave. For a certain system, ve and vc are 
determinant and do not change with time. According to 
the soliton theory [13-17], the above solution with weak 
nonlinear interaction (b<<1) and small skirt ( ),x tφ ′ ′  

may be approximated by (x’ > vet’ ) 

( ) ( )24 2 /
'

e 0 ce
i x -x t 2k x tb ke e
υ υυφ ′ ′−′ ′− −=   (31) 

Thanks to the small term b
2φ φ , then Eq. (21) can 

be approximated by 

0t x xiφ φ′ ′ ′′+ ≈                          (32) 

Substituting Eq. (31) into Eq. (32), we can examine 
that it satisfies Eq. (32), and can get 4e kυ ≈ , which is 

the group speed of the particle. (Near the top of the peak, 
we must take both the nonlinear and dispersion terms 
into account because their contributions are of the same 
order. The result is the group speed.). Here, we have 
only checked the formula for the region where ( ),x tφ  

is small; that is, when a particle is approximated by Eq. 
(31), it satisfies the approximate wave Eq. (32) with 

4e kυ ≈ . 

                                            
 

     

 
 

Fig.1. The solution in Eq. (29) at V = A = 0 in Eq. (11) and its features. 
 

However, if Eq. (32) is treated as a linear 
Schrodinger equation, its solution is of the form: 

( ) ( ), i kx tx t Ae ωφ −′ =                    (33) 

We now have 2kω = , which gives the phase velocity 
kω  as 

c kυ = and the group speed 
gr 2k kω υ∂ ∂ = = . 

Apparently, this is different from 4e kυ = . This is 

because the solution Eq. (31) is essentially different 
from Eq. (33). Therefore, the solution Eq. (32) is not the 
solution of nonlinear Schrodinger equation (20) with 
V(x, t) = 0 in the case of weak nonlinear interactions. 
Solution Eq. (31) is a “divergent solution” (( ),x tφ → ∞  

at x → −∞ ), which is not an “ordinary plane wave”. 
The concept of group speed does not apply to a 
divergent wave. Thus, we can say that the soliton is 
made from a divergent solution, which is abandoned in 
the linear waves. The divergence develops by the 
nonlinear term to yield waves of finite amplitude. When 
the nonlinear term is very weak, the soliton will diverge; 
and suppression of divergence will result in no soliton. 
These circumstances are clearly seen from the soliton 
solution in Eq. (30) in the case of nonlinear 
coefficient 1b ≠ . If the nonlinear term approaches zero 
( 0b → ), the solitary wave diverges ( )( ),x tφ → ∞ . If 

we want to suppress the divergence, then we have to set 
0k = . In such a case, we get Eq. (33) from Eq. (30). 

This illustrates that the nonlinear Schrodinger equation 
can reduce to the linear Schrodinger equation if and 
only if the nonlinear interaction and the group speed of 
the particle are zero. Therefore, we can conclude that 
the microscopic particles described by the nonlinear 
Schrodinger equation in the weak nonlinear interaction 
limit is also not the same as that in linear Schrodinger 
equation in quantum mechanics. Only if the nonlinear 
interaction is zero, the nonlinear Schrodinger equation 
can reduce to the linear Schrodinger equation. However, 
real physical systems or materials are made up of a 
great number of microscopic particles, and nonlinear 
interactions always exist in the systems. The nonlinear 
interactions arise from the interactions among the 
microscopic particles or between the microscopic 
particles and the environment. The nonlinear 
Schrodinger equation should be the correct and more 
appropriate theory for real systems. It should be used 
often and extensively, even in weak nonlinear 
interaction cases. However, the linear Schrodinger 
equation in quantum mechanics is an approximation to 
the nonlinear Schrodinger equation and can be used to 
study motions of microscopic particles in systems in 
which there exist only very weak and negligible 
nonlinear interactions. 

However, how could a microscopic particle be 
localized in such a case? In order to shed light on 
conditions for localization of microscopic particle in the 
nonlinear Schrodinger equation, we return to discuss the 
property of nonlinear Schrodinger equation (20). The 
time-independent solution of Eq. (20) is assumed to 
have the form of [5-10] 

ℏ/),('),( iEtetxtx −=ϕφ                  (34) 
Then Eq. (20) becomes as 

c 

a 

b 
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2
22 ' ( ) ' ' ' 0

2
V r E b

m
ϕ ϕ ϕ ϕ − ∇ + − − = 

�ℏ
  (35) 

For the purpose of showing clearly the properties of 

this system, we here assume that ( )V r
�

and b are 
independent ofr

�
. Then in one-dimensional case, 

equation (35) may be written as 
2 2

2

'
( ')

2 ' eff

d
V

m x d

ϕ ϕ
ϕ

∂ = −
∂

ℏ
              (36) 

4 21 1
( ') ' ( ) '

4 2effV b V Eϕ ϕ ϕ= − −       (37) 

When V > E and V < E, the relationship between 

( ')effV ϕ and 'ϕ  is shown in Fig. 2. From this figure we 

see that there are two minimum values of the potential, 
corresponding to two ground states of the microscopic 
particle in the system, i.e., '

0 ( ) /ϕ V E b= ± − . This 

is a double-well potential, and the energies of the two 
ground states are -(V-E)2/4b ≤≤≤≤ 0. This shows that the 
microscopic particle can be localized due to the fact that 
the microscopic particle has negative binding energy. 
This localization is achieved through repeated reflection 
of the microscopic particle in the double-well potential 
field. The two ground states limit the energy diffusion, 
thus the energy of the particle is gathered, soliton is 
formed, and the particle is eventually localized. 
Obviously, this is s result of the nonlinear interaction 
because the particle is in normal, expanded state if b=0. 
In the latter, there is only one ground state of the 
particle which is ' 0ϕ = . Therefore, only if 0b ≠ , the 
system can have two ground states, and the microscopic 
particle can be localized. Its binding energy, which 
makes the particle to be localized, is provided by the 
attractive nonlinear interaction, -b(ϕ’ϕ’* )2, in the 
systems. Only if the coupling interaction between them 
equal to zero or exists not, then Eq. (20) can degenerate 
to the linear Schrodinger equation in Eq. (7). This 
indicates again that the linear Schrodinger equation in 
quantum mechanics can only describe the states and 
properties of a single particle in vacuum without the 
nonlinear interaction. However, such physical systems 
are not existent in nature. Therefore we conclude from 
this investigation that the linear Schrodinger equation is 
an approximate and linear theory and cannot correctly 
describe the states and properties of the microscopic 
particle in the realistic physics systems. In previous 
investigations plenty of scientific workers use it to study 
the states and properties of microscopic particles in the 
systems of many particles and many bodies and obtain a 
lot of approximate results, in which some complicated 
and really nonlinear interaction among these particles, 
which could determine the essences and natures of 
particles, are ever replaced by a simple and uniform 
average-potential unassociated with the states of 
particles in virtue of different approximate methods. 
Thus the effects and results arising from these 
complicated effects and nonlinear interactions are 
ignored completely. Then the state and properties of 
particles determined by the average potential are not 
real and correct. It is very necessary to re-study these 
problems by the nonlinear Schrodinger equation and 

corresponding quantum theory. These results show 
clearly that quantum mechanics need very develop 
towards the direction of nonlinear domain [22-25]. 

 
Fig.2. The effective potential of nonlinear Schrodinger equation. 

IV.  CONCLUSION 

Since there are plenty of difficulties in quantum 
mechanics, in which the states and properties of 
microscopic particles are described by a linear 
Schrodinger equation, thus we here used a nonlinear 
Schrodinger equation to replace it and to study further 
the nature and states of microscopic particles. From this 
investigation we find that the states and properties of 
microscopic particles are considerably changed relative 
to those in quantum mechanics. An outstanding and 
obvious change is that the microscopic particles have a 
evident wave-corpuscle duality which are obtained from 
the natures and properties of the solutions of nonlinear 
Schrodinger equation in the cases of different external 
potentials, the significances of wave function and 
conservation laws met by it. The solution of the 
nonlinear Schrodinger equation contains an envelop and 
carrier waves with determinant frequency which can 
propagation in medium in a certain velocity. These 
display the wave feature of particle. However the 
solutions have also a mass centre and possesses a 
determinant size and mass, momentum and energy, 
which satisfy also the conservation laws of mass, 
momentum and energy, at the same time, they meet the 
collision law of classical particles. These embody the 
corpuscle feature of the microscopic particles. Finally 
we seek the reasons and roots generating these changes, 
which are due to the nonlinear interactions among the 
particles or the particles and background fields in the 
systems described by the nonlinear Schrodinger 
equation. In the meanwhile, we verified that the linear 
Schrodinger equation can only describe the states and 
properties of a single microscopic particle in vacuum 
without non linear interaction, the quantum mechanics 
is an approximate and linear theory and cannot 
represent in truth the properties and states of motion of 
the microscopic particles. For a realistic physics 
systems composed of many particles and many bodies 
we should use the nonlinear Schrodinger equation in Eq. 
(10) to describe the states and properties of the 
microscopic particles. The nonlinear interactions 
introduced in the nonlinear Schrodinger equation break 
through the fundamental hypothesis for the 
independence of Hamiltonian operator of the systems 
with wave function of states of particles in quantum 
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mechanics. Thus these microscopic particles are 
localized and have a real wave-corpuscle duality. 
Therefore our investigations point out the direction of 
development of quantum mechanics and raise our 
knowledge and understanding to the essences and 
natures of microscopic particles. 
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